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Part I: image restoration with diffusion prior

Concurrent works

StableSR, DiffBIR



Motivation: details
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Existing works: supervised learning and self-supervised method

Input Real-ESRGAN

SwinIR GT

missing high-frequency detail



Motivation: details
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Existing works: +class specific generative prior
 e.g., GLEAN, CodeFormer (can only process specific classes)

missing high-frequency detail



The opportunity raising by stable diffusion
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Training data
 Small size (700 K) ➔ Huge Size (5 B)

 Restricted ➔ Unrestricted
 1 class ➔many classes

 Cropped ➔ uncropped 

StyleGAN face

LAION-5B

Texture prior



How to use it? Fine-tuning
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Other fine-tune methods

10https://boft.wyliu.com/



Method: fine-tune patch-based diffusion
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SwinIR

SCUNET

Ours

Input
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Input ESRGAN

Ours GT

SR X8



Input Real-ESRGAN SwinIR Ours

Real-ESRGAN Face CodeFormer CodeFormer (fidelity) GT

SR X8



Input Real-ESRGAN SwinIR Ours

Real-ESRGAN Face CodeFormer CodeFormer (fidelity) GT



Input Real-ESRGAN SwinIR Ours

Real-ESRGAN Face CodeFormer CodeFormer (fidelity) GT



Input Real-ESRGAN SwinIR Ours

Real-ESRGAN Face CodeFormer CodeFormer (fidelity) GT

Face-specific restoration



Discussion: why the design
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Discussion: why the design
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Discussion: why the design
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Outline

22

Any-class, High-quality

Real data, Any-task



Part II: controllable restoration with text-
guided diffusion



Mobile SR Mobile motion deblur Mobile denoising Rendering denoising



Motivation: generalization
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Existing methods: poor generalizability

Image credit: Masked Image Training for Generalizable Deep Image Denoising, CVPR’23

Input Output Input Output

unseenseen



Motivation: generalization

26

observation degradation true signal

Testing on many unseen degradations



Naiive ideas

27

Degradation augmentation/randomization
 Like, Real-ESRGAN

Controllable

Degradation-invariant representation learning
 Content prior

 Masked image modeling



Method: degradation augmentation
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Synthesize image and text prompt
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Method: fine tune diffusion model
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Method: degradation prompt
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Results

31

Model trained on synthetic data but testing on real data



Results – mobile phone SR

Input DiffBIR Ours



Results – mobile phone denoising (SIDD)
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Input StableSR Ours



Input Output

Results – rendering denoising



Results – out-of-focus deblurring
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Input Output



Ours - SRCodeformer Ours - Deblur

DeblurGANv2 MPRNet Burst

SwinIR

Lai, SIGGRAPH’22

StableSR

Input

Results – motion deblurring



Deblur X20 Deblur X40Input

Results – controllability 



SR X3 SR X16Input

Results – controllability 



Results – controllability 
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Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Results – different input imaging conditions
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StableSR Ours



Take home messages

Challenge but opportunities
 Inconsistency caused by patch processing

 When the noise not totally removed, noise → inaccurate texture
 Ongoing: increase the synthesis noise level
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Output



Take home messages

Challenge but opportunities
 Inconsistency caused by patch processing

 When the noise not totally removed, noise → inaccurate texture
 Ongoing: increase the synthesis noise level

 Frequency control
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Up x10
“SR x10”

“SR x10”



Take home messages

Challenge but opportunities
 Inconsistency caused by patch processing
 When the noise not totally removed, noise → inaccurate texture

 Ongoing: increase the synthesis noise level

 Frequency control
 Uniform → Non-uniform restoration

 Synthetic gaussian is hard for real deblur
 Need different manipulation level, like dehaze

Regional controllable

Guidance

 Layered

 Processing time of patch-based method
 TODO:

 Structural content, like text
 Continuous representation

61
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