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Goal: GenAI + Advanced Cameras for VFX
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Reduce actor, time, and money costs



Research Works
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Viewpoint + Lens Background
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Perspective Distortion Correction

Wang et al, IJCV  2024
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Matting by Generation

Wang et al, SIGGRAPH 2024
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Good Photos are Not Easy to Take

Examples of “bad/undesired” photos,

caused by unwanted imaging factors

BackgroundLightingDevice Viewpoint
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Difficulty in Controlling Imaging Factors

Image credit: DALLE2

 Numerous factors

 Specialized equipment

 Inflexible

 Expensive

 Expertise

 Multiple trials



Simple yet Popular DL-based Solution
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Popular Approaches
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Image-to-Image 

Transform

Undesired 

Samplings

Desired 

Sampling

Challenges
• Not suitable for severe under-constrained problems

• Requires a lot of paired data with perfect labels

• One-to-one mapping



Image Factors and Factorization
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Image Manipulation
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Harness Pre-trained Generative Models
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Human Annotations

Inverse 

Rendering

Reconstruction

Constrained

Input

+Geometry Loss

Input

Learning with Labels: imperfect labels

Optimization-based: no labels required



Viewpoint + Lens Background
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Perspective Distortion Correction

Wang et al, IJCV  2024
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Camera-to-Subject Distance

Short Camera-to-Subject Distance
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< 60 cm



Perspective Projection
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Perspective

Depth Variation



Weak-perspective Projection
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Depth Variation

Camera-to-Subject Distance

Perspective Weak-perspective



Manipulate Viewpoint and Lens
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Perspective Weak-perspective



Existing Methods – Warping-based
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Zhao et al, ICCV’19

Correction Flow OutputInput

Warp

Flow Estimation Inpainting

Fried et al, SIGGRAPH’16



Limitations of Existing Methods
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Fried+

Zhao+

TargetInput Output

 Flow warping only repeats existing pixels

 CANNOT reveal occluded regions

 Invisible ear, cheek, neck …

 CANNOT deal with serious distortion

 When camera-to-face distance is 20–40cm

 Not 3D-aware

 Face shape is flawed

 Learning-based method (Zhao+) is worse

 Require a lot of training data

 Hard to generalize

 CANNOT continuously change



Optimization-based Factorization 
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Optimization-based Factorization 
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Inverse 

Rendering

Input: 

Single Image Reconstruction Input

Forward 

RenderingConstraints

+Geometry Loss

Challenge: ill-posed/unconstrained



Ambiguity of Parameters
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Camera-to-Subject Distance 

Large

…

Focal LengthSmall Large

Face Shape

Small

Many combinations

resemble input image

Flat



3D GAN Prior as Face Constraint
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Camera Regularization (CR)
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Inverse 

Rendering

Input: 

Single Image Reconstruction

Unconstrained

3 Strategies



CR 1: Focal Length Re-parameterization
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▪ Focal Length

Image

plane
Image

plane

Optical 

center

Camera-to-Subject Distance 

Motivation: Reduce unknown parameters and decouple

Focal

length

(simplified approximation)
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CR 1: Focal Length Re-parameterization



CR 2: Optimization Scheduling
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Rendering Input Rendering Input

Optimization Frozen

Motivation: Face is easier to fall into sub-

optimum than camera

Optimize camera Optimize face, refine camera



CR 3: Better Initialization  
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Start from a close-up camera position

Original initialization

Get init. cam Get init. face para. Get eyes’ distance Modify 



Ambiguity Caused by Loss
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Pixel loss is very sensitive to pixel change



Geometric Regularization
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Uncertainty term

prediction input
Uncertainty-based Loss



Extensions for Full-frame Image
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Results – Mesh
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Other GAN inversion methods



Results
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Results – Continuous Manipulation
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Results – Comparison 
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Fried et al, SIGGRAPH’16 Ours

3D geometric consistentStretch-like



Results – Comparison 
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Input Fried et al, SIGGRAPH’16 Ours



Results – Comparison 
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Input Fried et al, SIGGRAPH’16 Ours



Results – Comparison 
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Input Fried et al, SIGGRAPH’16 Ours
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Dolly Zoom
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Dolly Zoom



Viewpoint + Lens Background
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Perspective Distortion Correction

Input

Ours

Matting by Generation

Wang et al, SIGGRAPH 2024



Harness Pre-trained Generative Models
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Human Annotations

Inverse 

Rendering

Reconstruction

Constrained

Input

+Geometry Loss

Input

Learning with Labels: imperfect labels

Optimization-based: no labels required



Manipulate Background
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Background Gallery



Factorization Problem
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Learning with Labels
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Ke et al, MODNet, AAAI’22
Li et al, P3M, MM’22
Ma et al, ViTAE-S, IJCV’23

Human Annotations

Input image Label

Poor label quality



Limitations of Existing Methods
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Ke et al, MODNet, AAAI’22
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Generative Diffusion Prior
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Input training image LabelOutput

Generative Prior for Regularization Diffusion Model with

Rich Image Prior



Repurposing Latent Diffusion Model
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Challenge of Processing HR Images
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Text prompt
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Pipeline for Processing HR Images
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Pipeline for Processing HR Images
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Get potential areas by uncertainty



Full Pipeline
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MODNet ViTAE-S

ReferenceOurs

Ke et al, MODNet, AAAI’22
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Ma et al, ViTAE-S, IJCV’23



DiffMat Ours Human Annotation



Input Ours Human Annotation



Input Ours Human Annotation



ViTAE-S Ours
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Out-of-Distribution Matting

OursViTAE-SSAM-basedInput



Matting with Additional Guidance
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w/ guidancew/o guidanceInput



Beyond Matting

 Other image-like intermediate parameters without accurate label / real date

 Single Image Normal Map (Single Image)

 Albedo (Single Image)

 Depth Estimation (Single Image)
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marigold, CVPR’24

Normal

Depth Albedo
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Factorization-based Methods
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Thank you!
Questions or Comments?
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