Polarimetric Camera Calibration Using an LCD Monitor

Zhixiang Wang Supervisor: Yung-Yu Chuang, Ph.D.

January 15, 2020

National Taiwan University

CMLab, National Taiwan University, since 1991

Polarization

7

Polarization Imaging

Shape from Polarization

[Miyazaki et al. PAMI'04] [Saito et al. CVPR'99]

[Smith et al. ECCV'16] [Yu et al. ICCV'17]

Polarization Imaging

Challenges: - unknown polarimetry

Polarization Imaging

Challenges: - unknown polarimetry + radiometry

Polarization Imaging

Challenges: - unknown polarimetry + radiometry Calibration

Polarization Imaging

Shape from Polarization

Challenges: - unknown polarimetry + radiometry Calibration - ambiguity

Polarization Imaging

Solve Ambiguity

+ Multi-View Stereo

[Cui et al. CVPR'17]

+ Depth Sensors + Binocular Stereo

[Kadambi et al. IJCV'17]

[Berger et al. ICRA'17]

Challenges: - unknown polarimetry + radiometry Calibration

Polarization Imaging

Solve Ambiguity

+ Multi-View Stereo + Depth Sensors + Binocular Stereo

[Cui et al. CVPR'17]

[Kadambi et al. IJCV'17]

[Berger et al. ICRA'17]

Challenges: - unknown polarimetry + radiometry - require extra geometric parameters

Goal: Calibrate a polarimetric camera

Goal: Calibrate a polarimetric camera

Goal: Calibrate a polarimetric camera

[Zhang et al. PAMI'00]

Goal: Calibrate a polarimetric camera

Goal: Calibrate a polarimetric camera

Goal: Calibrate a polarimetric camera

[Debevec et al. Siggraph'97]

Goal: Calibrate a polarimetric camera

[McCamy et al. 76]

Goal: Calibrate a polarimetric camera

Main idea: Using an LCD monitor

Main idea: Using an LCD monitor

Typical interior structure of LCD monitors

LCD monitors

Viewed by a polarimetric camera

LCD monitors

Characteristics A. In-plane rotation

LCD monitors

Characteristics A. In-plane rotation

LCD monitors

Characteristics A. In-plane rotation

30

LCD monitors

Characteristics B. Complete linear polarization

Introduction – Motivation ³¹

Pattern-based calibration

Overview

$$\hat{g}(M_{k,p}) = t_p + a_p \cos 2(\phi_k - \hat{\psi}_p)$$

???????????????

Overview

on

on

$$\hat{g}(M_{k,p}) = t_p + a_p \cos 2 \left(\phi_k - \hat{\psi}_p \right)$$

$$\hat{g}(M_{k,p}) = t_p + a_p \cos 2 \left(\phi_k - \hat{\psi}_p \right)$$

Overview

Method – Known CRF

Method – Known CRF

46

Overview

 $\hat{g}(M_{k,p}) = t_p + a_p \cos 2 \phi_k$ $\hat{\psi}_p ig)$ 2

Spatial inconsistency

Overview

Decompose Euler Angle (Yaw)

Decompose Euler Angle (Yaw)

Recall: in-plane rotation

Decompose Euler Angle (Yaw)

 $\hat{g}(M_{k,p}) = t_p + a_p \cos 2 \left(\phi_k - \hat{\psi}_p \right)$

$$\hat{g}(M_{k,p}) = t_p + a_p \cos 2 \left(\phi_k - \hat{\psi}_p \right)$$

where $egin{pmatrix} t_p = (I_{\max}(p) + I_{\min}(p))/2 \ a_p = (I_{\max}(p) - I_{\min}(p))/2 \end{bmatrix}$

$$\operatorname{let} t_p = a_p = I_{\max}(p)/2$$

$$\hat{g}(M_{k,p}) = t_p + lpha_{\mathbf{x}} \cos 2ig(\phi_k - \hat{\psi}_pig)$$

$$\hat{g}(M_{k,p}) = t_p + a_p \cos 2 \left(\phi_k - \hat{\psi}_p \right)$$

$$\hat{g}(M_{k,p}) = t_p + t_p \cos 2\left(\phi_k - \hat{\psi}_p\right)$$

$$\hat{g}(M_{k,p}) = t_p \left(1 + \frac{\cos 2\psi_k}{\cos 2\phi_k} + \frac{\sin 2\psi_k}{\sin 2\phi_k} \sin 2\phi_k\right)$$

$$\hat{g}(M_{k,p}) = t_p + t_p \cos 2\left(\phi_k - \hat{\psi}_p\right)$$

$$\hat{g}(M_{k,p}) = t_p \left(1 + \frac{\cos 2\psi_k}{\cos 2\phi_k} + \frac{\sin 2\psi_k}{\sin 2\phi_k} \sin 2\phi_k\right)$$

$$\hat{g}(M_{k,p}) = t_p \left(1 + lpha_p \cos 2 \phi_k + eta_p \sin 2 \phi_k
ight)
onumber \ \hat{g}(M_{1,p}) = t_p \left(1 + lpha_p \cos 2 \phi_1 + eta_p \sin 2 \phi_1
ight)$$

$$\hat{g}(M_{k,p}) = t_p + t_p \cos 2\left(\phi_k - \hat{\psi}_p\right)$$

$$\hat{g}(M_{k,p}) = t_p \left(1 + \frac{\cos 2\psi_k}{\cos 2\phi_k} + \frac{\sin 2\psi_k}{\sin 2\phi_k} \sin 2\phi_k\right)$$

$$rac{\hat{g}(M_{k,p})}{\hat{g}(M_{1,p})} = rac{1+lpha_p\cos 2\phi_k+eta_p\sin 2\phi_k}{1+lpha_p\cos 2\phi_1+eta_p\sin 2\phi_1}$$

where
$$\hat{g}(M_{1,p}) \neq 0$$
 $\phi_1 \neq \hat{\psi}_p \pm \pi/2$

$$\hat{g}(M_{k,p}) = t_p + t_p \cos 2\left(\phi_k - \hat{\psi}_p\right)$$

$$\hat{g}(M_{k,p}) = t_p \left(1 + \frac{\cos 2\psi_k}{\cos 2\phi_k} + \frac{\sin 2\psi_k}{\sin 2\phi_k} \sin 2\phi_k\right)$$

$$rac{\hat{g}(M_{k,p})}{\hat{g}(M_{1,p})} = rac{1+lpha_p\cos 2\phi_k+eta_p\sin 2\phi_k}{1+lpha_p\cos 2\phi_1+eta_p\sin 2\phi_1}$$

$$\hat{g}(M_{k,p}) = t_p + t_p \cos 2\left(\phi_k - \hat{\psi}_p\right)$$

$$\hat{g}(M_{k,p}) = t_p \left(1 + \frac{\cos 2\psi_k}{\cos 2\phi_k} + \frac{\sin 2\psi_k}{\sin 2\phi_k} \sin 2\phi_k\right)$$

$$\hat{g}(M_{k,p}) = \frac{1 + \alpha_p \cos 2\phi_k + \beta_p \sin 2\phi_k}{1 + \alpha_p \cos 2\phi_1 + \beta_p \sin 2\phi_1}$$

$$I_{k,p} - I_{1,p} = I_{1,p} \alpha_p \cos 2\phi_k + I_{1,p} \beta_p \sin 2\phi_k$$

$$- I_{k,p} \alpha_p \cos 2\phi_1 + I_{k,p} \beta_p \sin 2\phi_1$$

$$\text{ where } I_{k,p} = \hat{g}(M_{k,p})$$

$$\hat{g}(M_{k,p}) = t_p + a_p \cos 2 \left(\phi_k - \hat{\psi}_p
ight)$$

Solve linear system

$\mathbf{P} = (\mathbf{O}^T \mathbf{O})^{-1} \mathbf{O}^T \mathbf{D}$

Polarimetry

$$\hat{g}(M_{k,p}) = t_p + a \cos 2ig(\phi_k - \hat{\psi}_pig)$$

Overview

$$\hat{g}(M_{k,p}) = t_p \left(1 + lpha_p \cos 2\phi_k + eta_p \sin 2\phi_k
ight)$$

 $KP data \geq P+K unknown$

$$\hat{g}(M_{k,p}) = t_p \left(1 + lpha_p \cos 2 \phi_k + eta_p \sin 2 \phi_k
ight)$$

$KP data \geq P+K unknown$

At least - 2 object points - 2 polarizing channels

$$\hat{g}(M_{k,p}) = t_p \left(1 + lpha_p \cos 2 \phi_k + eta_p \sin 2 \phi_k
ight)$$

$KP data \geq P+K unknown$

Experiments – Simulation⁸²

Known CRF

- 1. Our method performs well
- 2. Schechner's method is sensitive to initialization
- 3. Schechner's method is less reliable when # phi is small, but our method is still robust

Experiments – Simulation⁸³

Unknown CRF

- 1. Our method performs well
- 2. Teo's method is sensitive to initialization
- 3. Teo's method is less reliable when # phi is small, but our method is still robust

Setup

84

Environment illumination

	Kno	wn ICRF	Unknown ICRF		
	CRF err. Ang. err.		CRF err.	Ang. err.	
Dark room Bright room	x x	0.76 ± 0.20 0.80 ± 0.28	0.01 ± 0.01 0.05 ± 0.01	$0.48{\pm}0.15 \\ 0.71{\pm}0.11$	
C					

- Reliably remove effect of environmental illumination

- The given ICRF could contain errors, but our joint method is good

Effectiveness of using less polarizer angles

Benefits of the adapted checker pattern P3

		Known ICRI	7	Unknown ICRF				
	CRF err	. Ang. err.	#images	CRF err.	Ang. err.	#images		
P0	X	$0.80 {\pm} 0.16$	≥ 4	0.20 ± 0.06	82.2 ± 26.1	≥ 4		
P1	×	$0.78 {\pm} 0.15$	≥ 4	0.07 ± 0.02	$1.24 {\pm} 0.43$	>4		
P2	×	$0.79 {\pm} 0.14$	≥ 4	0.02 ± 0.02	$0.38 {\pm} 0.32$	$\geq 4 + 11$		
P3	×	$0.78 {\pm} 0.15$	≥ 4	$0.01 {\pm} 0.01$	0.48 ± 0.15	≥ 4		

- known ICRF: standard checker pattern can achieve the same accuracy
- **unknown ICRF**: P1 suffers from *spatial inconsistency*
- unknown ICRF: more accurate but require more images
- **unknown ICRF**: our results is close to GT with less images

Benefits of the adapted checker pattern P3

		Known ICRI	7	Unknown ICRF			
	CRF err.	Ang. err.	#images	CRF err.	Ang. err.	#images	
P0	×	$0.80 {\pm} 0.16$	≥ 4	0.20 ± 0.06	82.2 ± 26.1	≥ 4	
P1	×	$0.78 {\pm} 0.15$	≥ 4	0.07 ± 0.02	1.24 ± 0.43	≥ 4	
P2	×	$0.79 {\pm} 0.14$	≥ 4	0.02 ± 0.02	$0.38 \!\pm\! 0.32$	$\geq 4 + 11$	
P3	×	0.78 ± 0.15	≥ 4	$0.01{\pm}0.01$	0.48 ± 0.15	≥ 4	

- Accurate estimated ICRF could be distorted during BA

Joint calibration vs. separate calibration

		Known ICRF			Unknown ICRF				
		CRF err.	Ang. err.	ψ err.	#images	CRF err.	Ang. err.	ψ err.	#images
Ţ	Separate Joint	x 0.02	0.45 0.38	3.08 0.19	$\geq 4+2$ ≥ 4	0.02 0.01	0.83 0.48	3.10 0.20	$\geq 4 + 2 + 11$ ≥ 4
									E)

CRF	Method	CRF err.	Ang. err.	#polar. ang.	#images
nwo	[2]	×	8.85 ± 15.39	≥ 4	≥ 4
k K	Ours	×	$0.62 {\pm} 0.28$	≥ 2	≥ 4
wn	[2] + ICRF	×	15.84 ± 29.59	≥ 4	$\geq 4 + 11$
kno	[3]	$0.13{\pm}0.09$	12.56 ± 7.31	≥ 4	≥ 4
m	Ours	0.04 ± 0.02	$0.63 {\pm} 0.18$	\geq 2	≥ 4

CRF	Method	CRF err.	Ang. err.	#polar. ang.	#images
uwo	[2]	×	8.85 ± 15.39	≥ 4	≥ 4
kne	Ours	×	$0.62 {\pm} 0.28$	\geq 2	≥ 4
мп	[2] + ICRF	×	15.84 29.59	≦≥4	$\geq 4 + 11$
kno	[3]	0.13 ± 0.09	12.56 ± 7.31	$\sim \geq 4$	≥ 4
un	Ours	$0.04\!\pm\!0.02$	$0.63 {\pm} 0.18$	\geq 2	≥ 4

CRF	Method	CRF err.	Ang. err.	#polar. ang.	#images
UMO	[2]	×	8.85 ± 15.39	≥ 4	≥ 4
kne	Ours	×	0.62 ± 0.28	\geq 2	≥ 4
МN	[2] + ICRF	×	15.84 ± 29.59	≥ 4	$\geq 4 + 11$
kno	[3]	$0.13{\pm}0.09$	12.56 ± 7.31	≥ 4	≥ 4
un	Ours	$0.04\!\pm\!0.02$	$0.63 {\pm} 0.18$	\geq 2	≥ 4

CRF	Method	CRF err.	Ang. err.	#polar. ang.	#images
uwo	[2]	×	8.85 ± 15.39	≥ 4	≥ 4
kno	Ours	×	$0.62 {\pm} 0.28$	≥ 2	≥ 4
wn	[2] + ICRF	×	15.84 ± 29.59	≥ 4	$\geq 4 + 11$
kno	[3]	0.13 ± 0.09	12.56 ± 7.31	4	≥ 4
un	Ours	$0.04\!\pm\!0.02$	$0.63 {\pm} 0.18$	≥ 2	≥ 4

Applicability

Applicability

LCD screens with a touch panel

>>

Conclusion

We propose a *joint* calibration method using characteristics of an LCD monitor.

- Novel and new: The basic idea of joint calibration with an LCD monitor is novel, and our linear polarization calibration method due to the characteristics of LCD monitors is new.
- Efficient and effective: Using the estimated CRF as initialization, our bundle adjustment leads to accurate and reliable results. Which is demonstrated by conducting extensive experiments. Considering that LCD monitors are everywhere, we believe that our method is easy to use as self-calibration methods.

Thank you!