Machine Learning Approaches with Real-world Priors for Imaging Factor Manipulation

Zhixiang Wang Advisor: Shin'ichi Satoh The University of Tokyo

Everyone Takes Images/Videos

Keep Moment

Create Video

Video Conference

But, Taking Good Ones is Not Easy

Distortions Exist in Imaging Process

Low Quality Bad Lighting

Bad Viewpoint Bad Composition

Imaging Process Has Various Factors

Imaging Factors Affect Images

SCENE FACTOR	
Subject: girl	
IMAGING FACTO	ORS
Background	 Sensor
• Camera	Lens
• Viewpoint	• Shutter
• Lighting	Aperture

Perfectly Setting Factors Is Not Trivial

- Various factors need to control
 - Expertise and Multiple Attempts
- Some settings are hard to reach
 - ► Inflexible and Expensive Hardware

Hardware

Less-than-ideal Imaging Factors

 $F(s \mid \underbrace{c, l, b, v}^{\texttt{ot}})$ Samplings Θ

→ Distorted and Unsatisfactory Captures

Device

Viewpoint Background

How to Alleviate These Distortions?

and Unsatisfactory Captures

Lighting Viewpoint Background

Factor 2 Camera

Image Manipulation

"Bad/Undesired" Image or Video

"Good/Desired" Image or Video

Interactive Image Manipulation

Interactive tool

- Need efforts to master
- Not automatic
- □ Require sufficient observation
- Not physically plausible

Imaging Factor Manipulation

Automatically Manipulate Less-than-ideal Factors

	Scene Factor		
	IMAGING FACTORS	Automatically	
	Background 🔒 Sensor 🔒		
"Bad/Undesired"	Viewpoint	"Go	bod/Desired''
	Lighting	C Manipulation	

Our techniques Interactive tool □ No effort to master Need efforts to master Automatic Not automatic □ No sufficient observation, OK Require sufficient observation Physically plausible **D** Not physically plausible

Three Manipulations in Our Thesis

Relation to Automatic Image Manipulation

Chen et al, CVPR'2018

Similarity

Has overlap with image editing and restoration

Difference

- Recover the scene from imperfect observations
- Edit imaging factors rather than others (e.g., scene/content)

Saharia et al, TPAMI'22

The Most Popular Approach

End-to-end Fully Supervised Learning

Wang et al, Deep Learning for Image Super-Resolution: A Survey, TPAMI'19 Li et al, Low-Light Image and Video Enhancement Using Deep Learning: A Survey, TPAMI'22 Zhang et al, Deep Image Deblurring: A Survey, IJCV'22 Wang et al, Deep Learning for HDR Imaging: State-of-the-Art and Future Trends, TPAMI'22

The Most Popular Approach Dataset Input Problems Of

Learning structure: Ineffective for seriously ill-posed problems
 Required dataset: Tedious data with perfect label

End-to-end Fully Supervised Learning

Wang et al, Deep Learning for Image Super-Resolution: A Survey, TPAMI'19 Li et al, Low-Light Image and Video Enhancement Using Deep Learning: A Survey, TPAMI'22 Zhang et al, Deep Image Deblurring: A Survey, IJCV'22 Wang et al, Deep Learning for HDR Imaging: State-of-the-Art and Future Trends, TPAMI'22

Inspiration from Human Perception

Can you **see** this image clearly?

Inspiration from Human Perception

But if we know it's a photo of **Yann LeCun**

Traditional Approaches

Handcrafted Image Priors

Smoothness Prior

Dark Channel Prior He, CVPR' 09

Images Are More Than Just Pixels

Images Are More Than Just Pixels

Machine Learning Approaches with Real-world Prior

Real-world Priors vs Image Prior

- Priors of scenes
- Priors that are not handcrafted

Benefits

- Change the learning structures
- Solve severe ill-posed problems
- Reduce the requirement to data

Social Impact 1 – Machine Vision with Lower Costs, Enhanced Perception

Autonomous Driving

Robot

Social Impact 2 – Bringing Cinematic Filming Capabilities to Everyone's Phone

Social Impact 3 – Empowering Memories

"My Father passed away yesterday, please blur/remove the background"

"My eyes are always distorted and warped in my phone selfies ..."

"Fix perspective distortion please"

"I love this photo of my girls...hate the background. Will tip \$20 to the best one."

Social Impact 4 – Psychological

"People tend to view the inevitably warped stance of self-taken (i.e., hand-held) self-portraits as a new universal standard in appearance"

- Ward et al, 2018

Distorted

Undistorted

Image Sensor

Neural Global Shutter Wang et al, CVPR 2022

Portrait Distortion Correction

New Learning Structures

Warping \rightarrow Deblurring

Ours

35

Strong Geometric Distortion

Rolling Shutter Image Sensor

Row-by-row Exposure

- **Pros:** Cheap, Fast, and Widely Used
- Cons: Distortion under Fast Movement

Reset

Readout

Manipulate Camera Sensor

Dynamic Scene Captured by Global Shutter

Existing Methods – Warping-based

Limitations of Existing Methods

Target

Fail to large and complex motion

Bring **artifacts**

Liu et al, DSUR, CVPR'20 Zhong et al, JCD, CVPR'21

No Prior

Pixel rows

Target

Displacement

Motion Prior Induced by Hardware

No hardware change

rolling shutter with global reset

Traditional Learning Structure

Move pixels

New Learning Structure

Remove over-exposure

Design 1: Attend to row-wise degradations

Real Camera System

GS

Dataset Detail

- 79 Video Sequences
- ▶ 300 frames per seq
- ▶ 640×640 resolution
- Ground truth per frame
- Outdoor, street

27_{seq} 52_{seq for} for training evaluation

Dataset Detail

- ► 79 Video Sequences
- ▶ 300 frames per seq
- ► 640×640 resolution
- Ground truth per frame
- Outdoor, street
 - Camera motion
 - Scene motion
 - ► Mixture

Camera motion

Mixed motion

Results – Video

Input

Output

Reference

Results – Selected Frame

Input

Output

Reference

Results – Selected Frame

Input

Output

Reference

Results – Complex Degradations

Degradations Caused by Camera + Scene Motion

Input Output Reference

Evaluation – Setup

85 sequences for train

sequences for test

49

14 sequences for validation

Metrics **PSNR** and **SSIM**

Liu et al, DSUR, CVPR'20 Zhong et al, ESTRNN, ECCV'20

Evaluation – Quantitative Results

		PSNR↑		SSIM↑	
Method	Туре	RS	RSGR	RS	RSGR
Input	None	16.1612	17.3206	0.5356	0.6696
DSUR	RS correction	20.0274	22.5732	0.6883	0.7873
ESTRNN	Deblurring	19.3529	22.2271	0.6986	0.7974
Ours	RSGR correction	22.9542	27.8586	0.7870	0.8822

RSGR+[any model] **outperforms** RS+[any model]

RSGR is easier to correct than RS

Liu et al, DSUR, CVPR'20 Zhong et al, ESTRNN, ECCV'20

Evaluation – Quantitative Results

		PSNR↑		SSIM↑	
Method	Туре	RS	RSGR	RS	RSGR
Input	None	16.1612	17.3206	0.5356	0.6696
DSUR	RS correction	20.0274	22.5732	0.6883	0.7873
ESTRNN	Deblurring	19.3529	22.2271	0.6986	0.7974
Ours	RSGR correction	22.9542	27.8586	0.7870	0.8822

RSGR+Ours achieves the **best** score

Liu et al, DSUR, CVPR'20 Zhong et al, ESTRNN, ECCV'20

Evaluation – Qualitative Results

RS+DSUR

RSGR+Ours

Ground Truth

Liu et al, DSUR, CVPR'20

Evaluation – Qualitative Results

Input RS

Input RSGR

RS+DSUR

RSGR+Ours

RSGR+Ours is **closer** to target than RS+DSUR

Target

Evaluation – Results

Input RS

Input RSGR

RS+DSUR

RSGR+Ours

RSGR+Ours is **10x faster** than RS+DSUR

Target

Liu et al, DSUR, CVPR'20

Summary – Neural Global Shutter

- We are the first to use the RSGR hardware feature in academics. This feature induces motion priors
- With the RSGR hardware feature, we convert traditional RS correction problem into a deblurring-like one
- ► We develop an effective algorithm
- We build a system to capture data for supervised training

Image Sensor

Viewpoint + Lens

Portrait Distortion Correction Wang et al, IJCV 2024

Background

Matting by Generation Wang et al, SIGGRAPH 2024

New Learning Structures

Warping \rightarrow Rendering

SIGGRAPH'16	Fried et al.
ICCV'19	Zhao et al.

Short Camera-to-Subject Distance

Perspective Projection

Weak-perspective Projection

Camera-to-Subject Distance

Manipulate Viewpoint and Lens

Weak-perspective

Existing Methods – Warping-based

Learning-based flow estimation

Zhao et al, ICCV'19

Existing Methods – Warping-based

Fried et al, SIGGRAPH'16

Limitations of Existing Methods

Input Output Target

Flow warping only repeats existing pixels

- CANNOT reveal occluded regions
 - ▶ Invisible ear, cheek, neck ...
- CANNOT deal with serious distortion
 - ▶ When camera-to-face distance is 20–40cm
- Not 3D-aware
 - ▶ Face shape is flawed

Learning-based method (Zhao+) is worse

- Require a lot of training data
- ► Hard to generalize
- CANNOT continuously change

Real-world Prior Induced by 3D GANs

Chan et al, EG3D, CVPR'22
New Learning Structure

Challenge I: Ambiguity

Focal Length Re-parameterization

Challenge 2: Different Convergences

Face is **easier** to fall into **sub-optimum** when camera is incorrect

Face parameter $\in \mathbb{R}^{512 \times 14}$ Camera parameter $\in \mathbb{R}^{K}, K \ll 512$

input

optimize face

with incorrect cam

jointly optimize face and cam

reference

After reprojection

Optimization Scheduling

Optimize camera with mean face

Challenge 3: Ambiguity from Loss

Pixel loss is **less effective** for perspective changing

Uncertainty-based Geometric Loss

Full-frame Processing System

Geometric-aware stitching tuning

Background warping

Blending

Results – Mesh

Distorted Input

Other GAN inversion methods

Results

Results – Continuous Manipulation

Evaluation – Setup

image used for training

Qualitative Evaluation

<< 60 cm, **severe** distortion In-the-wild data

Evaluation – Setup

- Competed methods
 - Warping-based
 - ▶ Fried et al, SIGGRAPH'16
 - ► Zhao et al, ICCV'19
 - ▶ No code, no training data
- Metrics
 - ► Landmark error (LMK-E↓)
 - ► PSNR↑
 - ► SSIM↑
 - ► LPIPS↓
 - ► Identity (ID↑)

Ours achieves **highest score** for most metrics

Fried et al, SIGGRAPH'16

*: Our implemented

3D geometric consistent

Input

Fried et al, SIGGRAPH'16

Ours

Input

Fried et al, SIGGRAPH'16

Input

Fried et al, SIGGRAPH'16

Summary – Portrait Distortion Correction

▶ We introduce the pre-trained 3D face GAN as a real-world prior

► We change the warping-based learning structure into rendering-like

We develop strategies to reduce optimization ambiguity

► We develop a real-world system for full-frame images

Image Sensor

Neural Global Shutter Wang et al, CVPR 2022

Viewpoint + Lens

Portrait Distortion Correction Wang et al, IJCV 2024

Background

Matting by Generation Wang et al, SIGGRAPH 2024

New Learning Structures

Regression \rightarrow Generation

AAAI'22	MODNet	Ours
MM'22	P3M	
IJCV'23	Vitae-S	

Do You Want the Background?

Image credit: <u>url</u>

Manipulate Background

Composition Equation

Slides credit: Yung-Yu Chuang

Image Matting

Slides credit: Yung-Yu Chuang

Existing Method – Regression-based

Human annotations

Limitations of Existing Methods

Ke et al, MODNet, AAAI'22

Limitations of Existing Methods

Annotation is **challenging**

Poor label quality

Pre-trained Diffusion Models as Prior

Rich image statistics, range from semantics to texture details

New Learning Structure

Repurposing Latent Diffusion Model

Latent diffusion model models $p(x_0)$

Repurposing Latent Diffusion Model

Denoising Score Matching

System for Real-world Applications

Evaluation – Setup

P3M-10K

9,421 images Corse-grained labels

Training

PPM-100

100 images

Quantitative Evaluation

Qualitative Evaluation

636 images

Qualitative Evaluation

RVP

Evaluation – Setup

- Competed methods
 - ▶ Regression-based
 - ► MODNet
 - ► P3M
 - ► Vitae-S
- Metrics
 - ► Mean Squared Error: **MSE**↓
 - ► Mean Absolute Difference: **MAD**↓
 - ► Sum of Absolute Differences: **SAD**↓
 - ► Connectivity: **Conn**↓

 $\sum_{i} \left(\varphi(\alpha_i, \Omega) - \varphi(\alpha_i^*, \Omega) \right)^p$

Degree of Connectivity

$$\varphi(\alpha_i, \Omega) = 1 - (\lambda_i \cdot \delta (d_i \ge \theta) \cdot d_i).$$

$$d_i = \alpha_i - l_i$$
 $\lambda_i = \frac{1}{|K|} \sum_{k \in K} dist_k(i)$

Evaluation – Results

Evaluation – Results

Evaluation – Results

Method	MSE↓	MAD↓	SAD↓	Conn↓
MODNet	4.5	10.1	96.0	81.1
P3M	5.8	9.6	93.3	96.1
Vitae-S	3.4	6.5	62.6	59.3
Ours	2.5	6.3	56.9	54.0

Ours achieves **highest score** for all metrics

Human Annotation

Input

Human Annotation

Out-of-Distribution Matting

Matting with Additional Guidance

guidance

Input

w/o guidance

w/guidance

Summary – Matting by Generation

► We introduce pre-trained generative diffusion model as a real-world prior

With the pre-trained generative model, we convert the regression problem into a conditional generation problem

We develop a system to efficiently process high-resolution images and leverage users' inputs

Image Sensor

Neural Global Shutter Wang et al, CVPR 2022

Viewpoint + Lens

Input

Ours

Background

Matting by Generation Wang et al, SIGGRAPH 2024

New Learning Structures

Portrait Distortion Correction

Wang et al, IJCV 2024

Warping \rightarrow Deblurring	Warping \rightarrow Rendering	Regression \rightarrow Generation

Contributions

- We propose to combine ML learning approaches with real-world prior for imaging factor manipulation
- We introduce three new real-world priors and change the learning structure in the conventional problems
- These new learning methods show significant advantages
- We propose systems to make the new approaches work for real-world applications

Research Goal: Towards Model the Physical World

• Capture \rightarrow Recreate \rightarrow Re-render

Applications

Environment for Agent Learning and for Camera Design

Digital twins

Cinematic Filming

Limitations and Future Work

An Unified Model

- Manipulating one factor need one system
 - ▶ Future: an all-in-one system that takes arbitrary priors
- Generative prior and hardware induced prior are separately used
 - Future: combination of both

Explore Additional Factors

- Image Quality
- Lighting

Explore Other Priors

- Generative Video Models
- Physical Principle

Publications

Included in this thesis

- 1. Zhixiang Wang, Xiang Ji, Jia-Bin Huang, Shin'ichi Satoh, Xiao Zhou, and Yinqiang Zheng, Neural Global Shutter: Learn to Restore Video from a Rolling Shutter Camera with Global Reset Feature, CVPR, 2022
- 2. Zhixiang Wang, Yu-Lun Liu, Jia-Bin Huang, Shin'ichi Satoh, Sizhuo Ma, Guru Krishnan, and Jian Wang, DisCO: Portrait Distortion Correction with Perspective-Aware 3D GANs, IJCV, 2024
- 3. Zhixiang Wang, Baiang Li, Jian Wang, Yu-Lun Liu, Jinwei Gu, Yung-Yu Chuang, and Shin'ichi Satoh, Matting by Generation, SIGGRAPH, 2024

Publications

Other papers

- Xianzheng Ma, Zhixiang Wang, Yacheng Zhan, Yinqiang Zheng, Zheng Wang, Dengxin Dai, and Chia-Wen Lin, Both Style and Fog Matter: Cumulative Domain Adaptation for Semantic Foggy Scene Understanding, CVPR, 2022, Oral
- 2. Xiang Ji, Zhixiang Wang, Shin'ichi Satoh, and Yinqiang Zheng, Single Image Deblurring with Row-dependent Blur Magnitude, ICCV, 2023
- 3. Xiang Ji, Zhixiang Wang, Zhihang Zhong, and Yinqiang Zheng, Rethinking Video Frame Interpolation from Shutter Mode Induced Degradation, ICCV, 2023
- 4. Caoyuan Ma, Yu-Lun Liu, Zhixiang Wang, Wu Liu, Xinchen Liu, and Zheng Wang, HumanNeRF-SE: A Simple yet Effective Approach to Animate HumanNeRF with Diverse Poses, CVPR, 2024
- Hui Wei*, Zhixiang Wang*, Xuemei Jia, Yinqiang Zheng, Hao Tang, Shin'ichi Satoh, and Zheng Wang, HotCold Block: Fooling Thermal Infrared Detectors with a Novel Wearable Design, AAAI, 2023 co-first author

Publications

Other papers

- 6. Zhijing Wan, Zhixiang Wang, Yuran Wang, Zheng Wang, Hongyuan Zhu, and Shin'ichi Satoh, Contributing Dimension Structure of Deep Feature for Coreset Selection, AAAI, 2024
- 7. Kejun Lin, Zhixiang Wang[^], Zheng Wang[^], Yinqiang Zheng, and Shin'ichi Satoh, Beyond Domain Gap: Exploiting Subjectivity in Sketch-Based Person Retrieval, ACM Multimedia, 2023 <u>^: corresponding author</u>
- 8. Hui Wei, Hanxun Yu, Kewei Zhang, <mark>Zhixiang Wang</mark>, Jianke Zhu, and Zheng Wang, Moiré Backdoor Attack (MBA): A Novel Trigger for Pedestrian Detectors in the Physical World, ACM Multimedia, 2023
- 9. Zhijing Wan, Zhixiang Wang, CheukTing Chung, and Zheng Wang, A Survey of Dataset Refinement for Problems in Computer Vision Datasets, ACM Computing Surveys, 2023
- Zhijing Wan, Xin Xu, Zheng Wang, Zhixiang Wang, and Ruimin Hu, From Multi-source Virtual to Real: Effective Virtual Data Search for Vehicle Re-Identification, IEEE Transactions on Intelligent Transportation Systems, 2023
- 11. Hui Wei, Hao Tang, Xuemei Jia, Zhixiang Wang, Hanxun Yu, Zhubo Li, Shin'ichi Satoh, Luc Van Gool, and Zheng Wang, Physical Adversarial Attack Meets Computer Vision: A Decade Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence (Accepted)

Thank you!