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Everyone Takes Images/Videos

Create Video Video ConferenceKeep Moment
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But, Taking Good Ones is Not Easy

Bad 

Composition

Bad 

Lighting
Low 

Quality
Bad 

Viewpoint

Distortions Exist in Imaging Process
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=

Capture SetupPhoto

Imaging Process Has Various Factors
Lighting

Camera

Viewpoint

Subject

Background

𝑠

𝑏

𝑐

𝑣 𝑙



Imaging Factors Affect Images
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Lighting

Camera

Viewpoint

Subject

Background

𝑠

𝑏

𝑐

𝑣 𝑙

𝑐

𝑏

𝑙

𝑣
Camera

Lighting

Background

Viewpoint

Lens

Sensor

Shutter

Aperture

IMAGING FACTORS

SCENE FACTOR
𝐹 𝑠 𝑐, 𝑙, 𝑏, 𝑣)

Subject: girl



Perfectly Setting Factors Is Not Trivial
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 Various factors need to control

 Expertise and Multiple Attempts

 Some settings are hard to reach

 Inflexible and Expensive Hardware

Factor 1
Viewpoint

Factor 2
Camera

Factor 3
Lighting

𝛩
𝐹 𝑠 𝑐, 𝑙, 𝑏, 𝑣)

𝛩Samplings

Perfect Setting

Experts

Hardware



Less-than-ideal Imaging Factors
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Factor 1
Viewpoint

Factor 2
Camera

Factor 3
Lighting

𝐹 𝑠 𝑐, 𝑙, 𝑏, 𝑣)

𝛩Samplings

𝛩

BackgroundLightingDevice Viewpoint

➔ Distorted and Unsatisfactory Captures
𝛩

𝛩



Imperfect Factors
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Factor 1
Viewpoint

Factor 2
Camera

Factor 3
Lighting

𝐹 𝑠 𝑐, 𝑙, 𝑏, 𝑣)

𝛩

Samplings

𝛩

BackgroundLightingDevice Viewpoint

➔ Distorted and Unsatisfactory Captures

How to Alleviate These Distortions?



Image Manipulation
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“Bad/Undesired” Image or Video “Good/Desired” Image or Video

Out-of-focus Blur SharpPost-Processing



Interactive Image Manipulation
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Interactive tool

❑ Need efforts to master

❑ Not automatic

❑ Require sufficient observation

❑ Not physically plausible

Photoshop



Imaging Factor Manipulation
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Manipulation

𝑐

𝑏

𝑙

𝑣
Camera

Lighting

Background

Viewpoint

Lens

Sensor

Shutter

Aperture

IMAGING FACTORS

SCENE FACTOR

Scene

AUTOMATICALLY

Automatically Manipulate Less-than-ideal Factors

“Bad/Undesired” “Good/Desired”



Imaging Factor Manipulation
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Manipulation

𝑐

𝑏

𝑙

𝑣
Camera

Lighting

Background

Viewpoint

Lens

Sensor

Shutter

Aperture

IMAGING FACTORS

SCENE FACTOR

Scene

Automatically

Automatically Manipulate Less-than-ideal Factors

Interactive tool

❑ Need efforts to master

❑ Not automatic

❑ Require sufficient observation

❑ Not physically plausible

Our techniques

❑ No effort to master

❑ Automatic

❑ No sufficient observation, OK

❑ Physically plausible

V s



Three Manipulations in Our Thesis
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Image Sensor Viewpoint and Lens Background

Chapter 2 Chapter 3 Chapter 4



Relation to Automatic Image Manipulation
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Image 

Editing
Image 

Restoration

Image 

Enhancement

Difference
➔ Recover the scene from imperfect observations 

➔ Edit imaging factors rather than others (e.g., scene/content)

Image Manipulation

Transformation

Filtering

Similarity
➔ Has overlap with image editing and restoration 

Imaging Factor 

Manipulation

Chen et al, CVPR’2018

Brooks et al, CVPR’2023

Saharia et al, TPAMI’22

Image Morphing



The Most Popular Approach
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Input GTOutput

Loss

Wang et al, Deep Learning for Image Super-Resolution: A Survey, TPAMI’19

Li et al, Low-Light Image and Video Enhancement Using Deep Learning: A Survey, TPAMI’22

Zhang et al, Deep Image Deblurring: A Survey, IJCV’22

Wang et al, Deep Learning for HDR Imaging: State-of-the-Art and Future Trends, TPAMI’22

End-to-end Fully Supervised Learning

Dataset

Neural Network



The Most Popular Approach
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Input GTOutput

Loss

Wang et al, Deep Learning for Image Super-Resolution: A Survey, TPAMI’19

Li et al, Low-Light Image and Video Enhancement Using Deep Learning: A Survey, TPAMI’22

Zhang et al, Deep Image Deblurring: A Survey, IJCV’22

Wang et al, Deep Learning for HDR Imaging: State-of-the-Art and Future Trends, TPAMI’22

End-to-end Fully Supervised Learning

𝑓
Dataset

- Learning structure: Ineffective for seriously ill-posed problems

- Required dataset: Tedious data with perfect label

Problems



Inspiration from Human Perception
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Can you see this image clearly?



Inspiration from Human Perception
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But if we know it’s a photo of Yann LeCun

Priors
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Traditional Approaches

OutputInput Scene

Imaging Factors

Assumptions

Priors
Smoothness, etc.

OutputInput

Traditional

ML-based



Handcrafted Image Priors
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Dark Channel Prior
He, CVPR’ 09 

Smoothness Prior



Images Are More Than Just Pixels
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=

Photo

(255, 0, 0)
Pixel



Images Are More Than Just Pixels
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Photo

𝑐

𝑏

𝑙

𝑣
Camera

Lighting

Background

Viewpoint

Lens

Sensor

Shutter

Aperture

IMAGING FACTORS

SCENE FACTOR

Subject: girl
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Machine Learning Approaches 

with Real-world Prior

OutputInput

Real-world Priors vs Image Prior
- Priors of scenes

- Priors that are not handcrafted

Benefits
- Change the learning structures
- Solve severe ill-posed problems

- Reduce the requirement to data

Scene

Imaging Factors

Real-world Prior Machine Learning



𝑐

𝑏

𝑙

𝑣
Camera

Background

Lighting

Viewpoint

Lens

Sensor

Shutter

Aperture

IMAGING FACTORS
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Image Sensor Hardware-Induced
Motion Prior

Face PriorViewpoint and Lens

LearningManipulation

Background General 
Generative Prior

SCENE FACTOR



Social Impact 1 – Machine Vision with 

Lower Costs, Enhanced Perception
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Autonomous Driving Robot



Social Impact 2 – Bringing Cinematic 

Filming Capabilities to Everyone's Phone

31Image credit:  Thai Nguyen @Unsplash and DALLE2



Social Impact 3 – Empowering Memories
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“My Father passed away yesterday, 

please blur/remove the background”

“Fix perspective distortion please”

“My eyes are always distorted and 

warped in my phone selfies …”

“I love this photo of my 

girls...hate the background. Will 

tip $20 to the best one.”

r/PhotoshopRequest

https://www.reddit.com/r/PhotoshopRequest/


Social Impact 4 – Psychological

33

“People tend to view the inevitably warped stance of 

self-taken (i.e., hand-held) self-portraits as a new 

universal standard in appearance”

― Ward et al, 2018

Distorted Undistorted
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Image Sensor

Face PriorViewpoint and Lens

LearningManipulation

Background General Generative 
Prior

Hardware-Induced 
Motion Prior
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Neural Global Shutter

Time

P
ix

e
l 
ro

w
s

exposure
readout

Wang et al, CVPR 2022

Portrait Distortion Correction

Wang et al, IJCV 2024

Image Sensor Viewpoint + Lens

Input

Ours

Background

Matting by Generation

Wang et al, SIGGRAPH 2024

Warping → Deblurring

New Learning Structures

…

CVPR’20 DSUR

CVPR’21 JCD

…

Ours



Apple iPad Pro @shinkansen

36
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Strong Geometric Distortion

Distorted Capture
Real shape



Rolling Shutter Image Sensor

Exposure

ReadoutReset

38

P
ix

e
l 
ro

w
s

Time

o

o



Annoying Rolling Shutter Distortion

Real Distorted Capture

Risk Real-world Applications

40

Degrade Image Fidelity 

Autonomous Driving

Robot UAV



Manipulate Camera Sensor
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𝑐

𝑏

𝑙

𝑣
Camera

Lighting

Background

Viewpoint

Lens

Sensor

Shutter

Aperture

IMAGING FACTORS

SCENE FACTOR

Scene

Dynamic Scene

Captured by Rolling Shutter 

Dynamic Scene

Captured by Global Shutter 



Existing Methods – Warping-based
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Feature map
Encoder

Warping

Correlation 

Layer

Dense

Blocks

C
o
s
t 
v
o

lu
m

e

V
e

lo
c
it
y
 f

ie
ld Motion

Motion Estimation

Liu et al, DSUR, CVPR’20
Zhong et al, JCD, CVPR’21

x T

Decoder

Consecutive frames Output

Warped 
Feature map

Motion fieldinput
feature

output
feature
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Limitations of Existing Methods 

Liu et al, DSUR, CVPR’20
Zhong et al, JCD, CVPR’21

JCDDSURInput

Fail to large and complex motion

GT

Target

Bring artifacts

Artifacts Artifacts



Exposure

ReadoutReset
52

No Prior

rolling shutter

Displacement

Target
P

ix
e

l 
ro

w
s



Motion Prior Induced by Hardware

rolling shutter

Exposure

ReadoutReset
53

P
ix

e
l 
ro

w
s

with global reset

No hardware change Target

Row-wise blur



Traditional Learning Structure
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P
ix

e
l 
ro

w
s

P
ix

e
l 
ro

w
s

Time Time

Rolling Shutter Global Shutter

Exposure

ReadoutReset

Warping

Move pixels
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P
ix

e
l 
ro

w
s

P
ix

e
l 
ro

w
s

Time Time

Rolling Shutter 

with Global Reset

Global Shutter

Exposure

ReadoutReset

Deblurring-

like

Remove over-exposure

New Learning Structure



Learning Algorithm
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Short-term Fusion

RNN

RNN

Long-term Propagation

Time

T
e
m

p
o
ra

l A
tt

e
n
ti
o
n



Learning Algorithm
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Encoder Decoder

Output

Encoding

Spatial Attention

Exposure

Duration

Input

Design 1: Attend to row-wise degradations



Learning Algorithm
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Design 2: Use temporal information

Time



Learning Algorithm
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Long-term Propagation

RNN

RNN

Time

Design 2: Use temporal information



Learning Algorithm
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Short-term Fusion

RNN

RNN

Long-term Propagation

Time

Design 2: Use temporal information

T
e
m

p
o
ra

l A
tt

e
n
ti
o
n



Real Camera System
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Beam splitter
Relay lens

GS

RSGR

Lens

1 frame

Exposure

ReadoutReset

1 ms 10 𝜇s

Synchronized Cameras

RSGR GS



Dataset Detail

 79 Video Sequences

 300 frames per seq

 640×640 resolution

 Ground truth per frame

 Outdoor, street

64

640×640 640×640 

…

27 seq 

for training

52 seq for 

evaluation

79

seq



Dataset Detail

 79 Video Sequences

 300 frames per seq

 640×640 resolution

 Ground truth per frame

 Outdoor, street

 Camera motion

 Scene motion

 Mixture

65

Camera motion

Mixed motion



Results – Video

Input Output Reference

66



Results – Selected Frame

e
x
p
o
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Input Output Reference
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Results – Selected Frame
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Input Output Reference
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Input Output Reference
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Results – Complex Degradations

Degradations Caused by Camera + Scene Motion
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RS

DSUR

Ours

ESTRNN

GS

Input

Evaluation – Setup

DSUR

Ours

ESTRNN

GSRSGR

RSGS

RSGR

Liu et al, DSUR, CVPR’20     Zhong et al, ESTRNN, ECCV’20

RS RSGR GS

85 sequences for train 

49 sequences for test 

14 sequences for validation 
Metrics PSNR and SSIM

Warping-based

Deblurring-based

V s
Warping-based

Deblurring-based

GT
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Liu et al, DSUR, CVPR’20

Zhong et al, ESTRNN, ECCV’20

PSNR↑ SSIM↑

Method Type RS RSGR RS RSGR

Input None 16.1612 17.3206 0.5356 0.6696

DSUR RS correction 20.0274 22.5732 0.6883 0.7873

ESTRNN Deblurring 19.3529 22.2271 0.6986 0.7974

Ours RSGR correction 22.9542 27.8586 0.7870 0.8822

RSGR+[any model] outperforms RS+[any model]  

RSGR is easier to correct than RS 

Evaluation – Quantitative Results
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PSNR↑ SSIM↑

Method Type RS RSGR RS RSGR

Input None 16.1612 17.3206 0.5356 0.6696

DSUR RS correction 20.0274 22.5732 0.6883 0.7873

ESTRNN Deblurring 19.3529 22.2271 0.6986 0.7974

Ours RSGR correction 22.9542 27.8586 0.7870 0.8822

RSGR+Ours achieves the best score

Evaluation – Quantitative Results

Liu et al, DSUR, CVPR’20

Zhong et al, ESTRNN, ECCV’20

+7.8dB +0.2



Evaluation – Qualitative Results
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RS+DSUR RSGR+Ours Ground Truth

Liu et al, DSUR, CVPR’20
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Input RS RS+DSUR

RSGR+OursInput RSGR

Target

Evaluation – Qualitative Results

RSGR+Ours is closer to target 

than RS+DSUR

Liu et al, DSUR, CVPR’20
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Input RS RS+DSUR

RSGR+OursInput RSGR

Evaluation – Results

RSGR+Ours is 10x faster than

RS+DSUR0.43 

s/frame

0.04 

s/frame
Target

Liu et al, DSUR, CVPR’20



Summary – Neural Global Shutter

 We are the first to use the RSGR hardware feature in academics. This feature 

induces motion priors

 With the RSGR hardware feature, we convert traditional RS correction problem into 

a deblurring-like one

 We develop an effective algorithm

 We build a system to capture data for supervised training

83
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Image Sensor Hardware-Induced 
Motion Prior

Face PriorViewpoint and Lens

LearningManipulation

Background General Generative 
Prior



Image Sensor Viewpoint + Lens Background
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Neural Global Shutter

Time

P
ix

e
l 
ro

w
s

exposure
readout

Wang et al, CVPR 2022

Portrait Distortion Correction

Wang et al, IJCV  2024

Input

Ours

Matting by Generation

Wang et al, SIGGRAPH 2024

Warping → Rendering

New Learning Structures

SIGGRAPH’16 Fried et al.

ICCV’19 Zhao et al.

Ours
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Huge 

Nose

Disappeared 

Ears

Asymmetric 

Face

Sharp 

Chin

87



Camera-to-Subject Distance

Short Camera-to-Subject Distance

88

< 60 cm



Perspective Projection

89

Perspective

Depth Variation



Weak-perspective Projection
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Depth Variation

Camera-to-Subject Distance

Perspective Weak-perspective



Manipulate Viewpoint and Lens
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Perspective Weak-perspective

𝑐

𝑏

𝑙

𝑣
Camera

Lighting

Background

Viewpoint

Lens

Sensor

Shutter

Aperture

IMAGING FACTORS

SCENE FACTOR

Scene



Existing Methods – Warping-based
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Zhao et al, ICCV’19

Correction Flow OutputInput

Warp

Flow Estimation Inpainting

Gradient

Learning-based flow estimation 



Existing Methods – Warping-based
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Fried et al, SIGGRAPH’16

Input Correction Flow Output

Fitting

Warp

Reconstruction-based flow estimation 
Head Model



Limitations of Existing Methods

94

Fried+

Zhao+

TargetInput Output

 Flow warping only repeats existing pixels

 CANNOT reveal occluded regions

 Invisible ear, cheek, neck …

 CANNOT deal with serious distortion

 When camera-to-face distance is 20–40cm

 Not 3D-aware

 Face shape is flawed

 Learning-based method (Zhao+) is worse

 Require a lot of training data

 Hard to generalize

 CANNOT continuously change



Real-world Prior Induced by 3D GANs 
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Chan et al, EG3D, CVPR’22

Generator
Random noise

Implicit 

Representation

Face representation

Volumetric

Render

Camera parameter
Intrinsic and Extrinsic

𝐺



New Learning Structure
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Correction Flow

Warping
Flow 

Estimation

Input Output

Generator
Random noise Implicit 

Representation

Volumetric

Render𝐺

Traditional

Camera 

parameters
New Camera 

parameters



Challenge I: Ambiguity
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Many combinations resemble 

the input image
Face Shape

Front view

Front view

Side view

Side view



Perspective-aware 3D GAN Inversion
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Face Shape Face Shape

Focal Length Re-parameterization



Perspective-aware 3D GAN Inversion
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Image

plane
Image

plane

Optical 

center

Camera-to-Subject Distance 

Focal

length

Translation change

Camera-to-Subject Distance 

Compensate 
approximation error

Learnable para.

Approximation

Focal Length Re-parameterization



Perspective-aware 3D GAN Inversion
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Focal Length Re-parameterization



Challenge 2: Different Convergences
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input
optimize face

with incorrect cam
jointly optimize face and 

cam
reference

Face is easier to fall into sub-optimum 
when camera is incorrectFace Shape

Face parameter ∈ R512×14

Camera parameter ∈ R𝐾 , 𝐾 ≪ 512

After reprojection



Perspective-aware 3D GAN Inversion
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Better initialization

Face Shape

Camera

Input
Sampling

3
D

M
M

Latent 
code

Depth

mean

Original initialization

Get init. cam Get init. face para.

Get eyes’ distance Modify 

Close



Perspective-aware 3D GAN Inversion
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Face Shape

Optimization Scheduling

Rendering Input

Optimize face

Rendering Input

Optimize camera with mean face



Challenge 3: Ambiguity from Loss
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Pixel loss is less effective for perspective changing

Z translationZ translation

F
a

c
e

 p
a

ra
m

e
te

rs

 p
e

rt
u

rb
a

ti
o

n

Pixel Loss (L2) Landmark Loss

Low

High

GTGT



Perspective-aware 3D GAN Inversion
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Uncertainty-based Geometric Loss

Uncertainty term

prediction input

LandmarkLandmark

Learnable Parameter



Full-frame Processing System
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Depth 

Blend
Reproject

b

Input

MiDaS

Blend

Output
a

Minimize Equation (11,12)

c

latent code

In
v
e
rs

io
n

camera

generator

render

Geometric-aware stitching tuning

Background warping Blending



Results – Mesh
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Other GAN inversion methods
Distorted Input

HFGI3D OursTriplaneNet



Results

118

In
p

u
t

O
u

tp
u

t



Results – Continuous Manipulation

119



Evaluation – Setup

120

51 facesCMDP

Input Reference

60 cm 480 cm360 cm90 cm

…

7 

distances

Quantitative Evaluation Qualitative Evaluation

In-the-wild data

0 

image used for training

Burgos-Artizzu et al, CMDP, 2014

<< 60 cm, severe distortion



Evaluation – Setup

 Competed methods

 Warping-based

 Fried et al, SIGGRAPH’16 

 Zhao et al, ICCV’19

 No code, no training data

 Metrics

 Landmark error (LMK-E↓)

 PSNR↑

 SSIM↑

 LPIPS↓

 Identity (ID↑)

121

Fried et al, SIGGRAPH’16 

LMK-E↓ PSNR↑, SSIM↑, LPIPS↓, ID↑ 

Result
aligned

Reference
aligned

Landmark Landmark

Result
aligned

Reference
aligned

Background 

removed



Evaluation – Results
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Method LMK-E↓ PSNR↑ SSIM↑ LPIPS↓ ID↑

Fried’s 0.175 15.41 0.724 0.188 0.893

*Fried’s 0.165 14.41 0.716 0.208 0.860

Ours 0.138 17.52 0.747 0.167 0.859

Fried et al, SIGGRAPH’16 *: Our implemented 

prior

ML + prior

Ours achieves highest score for most metrics



Evaluation – Results
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Fried et al, SIGGRAPH’16 Ours

3D geometric consistentStretch-like



Evaluation – Results
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Input Fried et al, SIGGRAPH’16 Ours



Evaluation – Results
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Input Fried et al, SIGGRAPH’16 Ours



Evaluation – Results
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Input Fried et al, SIGGRAPH’16 Ours
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Dolly Zoom



130

Dolly Zoom



Summary – Portrait Distortion Correction

 We introduce the pre-trained 3D face GAN as a real-world prior

 We change the warping-based learning structure into rendering-like

 We develop strategies to reduce optimization ambiguity

 We develop a real-world system for full-frame images

131
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Image Sensor Hardware-Induced 
Motion Prior

Face PriorViewpoint and Lens

LearningManipulation

Background General 
Generative Prior



Wang et al, IJCV  2024

Image Sensor Viewpoint + Lens Background

133

Neural Global Shutter

Time

P
ix

e
l 
ro

w
s

exposure
readout

Wang et al, CVPR 2022

Portrait Distortion Correction

Input

Ours

Matting by Generation

Wang et al, SIGGRAPH 2024

Regression → Generation

New Learning Structures

AAAI’22 MODNet

MM’22 P3M

IJCV’23 ViTAE-S

Ours



Do You Want the Background?

134Image credit: url

https://www.techlearning.com/news/zoomvideo-conferencing-best-practices-revealed-in-new-research


Manipulate Background

135Image credit: total relighting

𝑐

𝑏

𝑙

𝑣
Camera

Lighting

Background

Viewpoint

Lens

Sensor

Shutter

Aperture

IMAGING FACTORS

SCENE FACTOR

Scene



Composition Equation
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𝐶 = α𝐹 + (1 − α)𝐵C

F B

Slides credit: Yung-Yu Chuang

Foreground Background



Image Matting
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𝐶 = α𝐹 + (1 − α)𝐵C

F B

Slides credit: Yung-Yu Chuang

Foreground Background



Existing Method – Regression-based

138

Input Predicted alpha matte

Matting

𝐶

Ke et al, MODNet, AAAI’22
Li et al, P3M, MM’22
Ma et al, ViTAE-S, IJCV’23

Human annotations

𝛼ො𝛼



Limitations of Existing Methods
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Ke et al, MODNet, AAAI’22

ModNetInput

Unnatural 

boundary



Limitations of Existing Methods
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Input image Label

Poor label qualityAnnotation is challenging



Pre-trained Diffusion Models as Prior

141

Rich image statistics, range from semantics to texture details



New Learning Structure

142

Input training image

Label

Ours

Regression

Generation

ViTAEs
ො𝛼 𝛼

Ƹ𝑝(𝛼|𝑥) 𝑝(𝛼)



Repurposing Latent Diffusion Model
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𝑥𝑡−1

D
Decoder

𝑥𝑡𝑥𝑇

𝑝
(𝑥

𝑡
)

𝑝
(𝑥

𝑡−
1

)

𝑝
(𝑥

𝑇
)

𝑝
(𝑥

0
)

𝑥0

Latent diffusion model models 𝑝(𝑥0) 

~ Gaussian distribution Clean data

Step



Repurposing Latent Diffusion Model
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Patch input

Output

Noise Predicted Noise

E D
Encoder

Decoder

Denoising Score Matching

𝑝(𝑥) → 𝑝 𝛼 → 𝑝 𝛼|𝑥
InputLabel

𝛼 ො𝛼𝑥

Step



System for Real-world Applications
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w/ or w/o users’ hint (a-c) Efficient Inference for high-resolution images



Evaluation – Setup

149

PPM-100 RVP

100 images 636 images 

P3M-10K

9,421 images 

Corse-grained labels

Training
Quantitative Evaluation Qualitative Evaluation

Qualitative Evaluation



Evaluation – Setup
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Ke et al, MODNet, AAAI’22
Li et al, P3M, MM’22
Ma et al, ViTAE-S, IJCV’23

 Competed methods

 Regression-based

 MODNet

 P3M

 ViTAE-S

 Metrics

 Mean Squared Error: MSE↓

 Mean Absolute Difference: MAD↓

 Sum of Absolute Differences: SAD↓

 Connectivity: Conn↓

Degree of Connectivity



Evaluation – Results
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MODNet ViTAE-S Ours Reference

Ke et al, MODNet, AAAI’22
Li et al, P3M, MM’22
Ma et al, ViTAE-S, IJCV’23



Evaluation – Results
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MODNet Ours ReferenceViTAE-S

Ke et al, MODNet, AAAI’22
Li et al, P3M, MM’22
Ma et al, ViTAE-S, IJCV’23
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MODNet ViTAE-S

ReferenceOurs

Ke et al, MODNet, AAAI’22
Li et al, P3M, MM’22
Ma et al, ViTAE-S, IJCV’23



Evaluation – Results
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Ours achieves highest score for all metrics

Method MSE↓ MAD↓ SAD↓ Conn↓

MODNet 4.5 10.1 96.0 81.1

P3M 5.8 9.6 93.3 96.1

ViTAE-S 3.4 6.5 62.6 59.3

Ours 2.5 6.3 56.9 54.0

Ke et al, MODNet, AAAI’22
Li et al, P3M, MM’22
Ma et al, ViTAE-S, IJCV’23



DiffMat Ours Human Annotation



Input Ours Human Annotation



Input Ours Human Annotation



ViTAE-S Ours



Input ViTAE-S Ours



Input

ViTAE-S

Ours



Ours

ViTAE-S



Out-of-Distribution Matting

OursViTAE-SSAM-basedInput



Matting with Additional Guidance

163

w/ guidancew/o guidanceInput

guidance



Summary – Matting by Generation

 We introduce pre-trained generative diffusion model as a real-world prior

 With the pre-trained generative model, we convert the regression problem 

into a conditional generation problem

 We develop a system to efficiently process high-resolution images and 

leverage users’ inputs
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Warping → Rendering Regression → Generation
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Contributions

 We propose to combine ML learning approaches with real-world prior for 

imaging factor manipulation

 We introduce three new real-world priors and change the learning structure 

in the conventional problems

 These new learning methods show significant advantages

 We propose systems to make the new approaches work for real-world 

applications
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Research Goal: 

Towards Model the Physical World

 Capture → Recreate → Re-render
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Limitations and Future Work

An Unified Model

 Manipulating one factor need one system

 Future: an all-in-one system that takes arbitrary priors

 Generative prior and hardware induced prior are separately used

 Future: combination of both

Explore Additional Factors

 Image Quality

 Lighting

Explore Other Priors

 Generative Video Models

 Physical Principle
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