Polarimetric Camera Calibration Using an LCD Monitor
Zhixiang Wang¹ Yinqiang Zheng²(✉) Yung-Yu Chuang¹
¹National Taiwan University ²National Institute of Informatics
wangzx1994@gmail.com, yqzheng@nii.ac.jp, cyy@ntu.edu.tw

Problem Definition and Contribution

Goal: Jointly calibrating the polarizer angles \(\{\phi_k\}^N_{k=1} \) and the inverse CRF \(g(\cdot) \) with only the knowledge of measured intensity M, s.t.,
\[
g(M_{k,p}) = I_p + a_p \cos 2(\phi_k - \psi_p).
\]

Motivation:

Main Idea

Characteristics of LCD Monitors:

Method

Flowchart:

Experiments & Results

Real-world Experiments:

(a) Results under different environment illumination settings.

(b) Comparison of different patterns (P0: Checkerboard).

(c) Comparison of separate and joint processes.

(c) Comparison of separate and joint processes.

Simulation (sensitivity analysis)

Real-world Experiments (Comparison):

Experiments & Results

LCD screens with a touch panel:

References:

2. Schechner, Self-calibrating imaging polarimetry. ICCP15
3. Teo et al. Self-calibrating polarisation radiometric calibration. CVPR18

Acknowledgments:

This work was finished when Zhixiang Wang visited the Optical Sensing and Camera System Laboratory (Oscars Lab), led by Dr. Yinqiang Zheng at National Institute of Informatics (NII), Japan, through the NII International Internship Program.

LCDs’ suitability: