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Abstract

Most computer vision systems assume distortion-free im-
ages as inputs. The widely used rolling-shutter (RS) image
sensors, however, suffer from geometric distortion when
the camera and object undergo motion during capture. Ex-
tensive researches have been conducted on correcting RS
distortions. However, most of the existing work relies heavily
on the prior assumptions of scenes or motions. Besides, the
motion estimation steps are either oversimplified or compu-
tationally inefficient due to the heavy flow warping, limiting
their applicability. In this paper, we investigate using rolling
shutter with a global reset feature (RSGR) to restore clean
global shutter (GS) videos. This feature enables us to turn
the rectification problem into a deblur-like one, getting rid
of inaccurate and costly explicit motion estimation. First, we
build an optic system that captures paired RSGR/GS videos.
Second, we develop a novel algorithm incorporating spatial
and temporal designs to correct the spatial-varying RSGR
distortion. Third, we demonstrate that existing image-to-
image translation algorithms can recover clean GS videos
from distorted RSGR inputs, yet our algorithm achieves the
best performance with the specific designs. Our rendered
results are not only visually appealing but also beneficial to
downstream tasks. Compared to the state-of-the-art RS solu-
tion, our RSGR solution is superior in both effectiveness and
efficiency. Considering it is easy to realize without changing
the hardware, we believe our RSGR solution can potentially
replace the RS solution in taking distortion-free videos with
low noise and low budget.

1. Introduction
Image sensor is the important component converting pho-

tons into digital signals, for machine to see [1, 27], to under-
stand [5,38], and to recreate [10,19] the visual world. It com-
prises millions of spatially distributed photodiodes, namely
pixels, performing photoelectric conversion and charge ac-
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cumulation when photons arrive during exposure duration.
Readout circuits read these accumulations out and convert-
ing them into spatially distributed digital signal, i.e., image,
when pixels complete charging. Since simultaneously read-
ing all pixels out requires millions of circuits, leading to
unaffordable costs, a key design of image sensors is schedul-
ing the exposure time and readout time of different pixels to
reuse limited readout circuits. This function is based on the
on-chip electronic shutters dominated by two modes: global
shutter (GS) and rolling shutter (RS).

Image sensors with different on-chip electronic shutters
hold contrast characteristics. GS-based image sensors ex-
pose all pixels simultaneously and transfer accumulated
charges to a storage area before readout. In this way, they can
read out charges sequentially with a few readout circuits (Fig-
ure 1a). But the requirement for additional storage increases
their expense and power consumption and leads to more
noises. Differently, RS-based image sensors expose pixels
scanline by scanline with a time delay (Figure 1b). This de-
lay enables RS sensors to overlap exposure and readout time,
leading to a higher frame rate. Besides, exemption from
additional storage area attributes to RS sensors lower cost
and fewer noises. Unfortunately, they bring distortions when
scenes or cameras undergo motion. The faster the move-
ment, the larger the distortion. The distortion obstructs vi-
sion systems equipped with RS sensors to precision-sensitive
applications, e.g., localization [37], optical flow [34], and
reconstruction [14]. It naturally poses a research question: if
there exists a solution for taking distortion-free videos with
low noise and low budget.

We categorize existing solutions into two folds: hardware-
based and computational. Hardware-based solutions imple-
ment the GS function on RS sensors by placing additional
memory nodes to store pixels on the charge [35], the volt-
age [30], even the digital domain [28]. The disadvantages
in sensor size, cost and noise are obvious. Computational
methods operate directly on RS outputs by correcting the
RS distortions [12, 15, 16, 22, 25, 43, 45]. Though existing
methods are different in either the input forms: single-image
vs. multi-image, or the method types: classical vs. learning-
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Figure 1. Different exposure modes. a, GS exposes all pixels simultaneously. This manner requires additional memory nodes to store
charged pixels before readout so that it is costly and often suffers from noises. b, RS exposes pixels scanline by scanline with a time delay,
featured in less noise, higher frame rate, and lower cost. Unfortunately, it leads to distortions when the scene or the camera undergoes
motion. Reducing these distortions needs to estimate the motion and complement pixels with the estimation. These steps rely on various
assumptions and are time-consuming, limiting RS sensors’ applicability. c, RSGR is a widely ignored feature of RS. It begins exposure of
all pixels at the same time and ends them scanline by scanline. The varying exposure duration of different scanlines yields spatial-varying
brightness and blur. RSGR enables us to turn the old RS rectification problem into a deblur-like one.

based, their basic ideas that complement the distorted pixels
through estimating pixel-wise motions are the same. In the
case of single image input, due to the ill-posedness, classical
methods estimate motion based on additional assumptions
on the scenes [12, 25] or the camera motions [22]. Learning-
based approaches relax the assumptions on scenes by digest-
ing the implicit prior, but those on camera motions [24, 45]
still hold. The assumptions on either scenes or camera mo-
tions compromise their practical applicability. When the
input comprises multiple images, this problem becomes well-
posed, since one can directly estimate the motion between
two consecutive frames with classical [43, 44] or learning-
based methods [16]. Then, they approximate the displace-
ment between the RS frame and the virtual GS frame and
use the approximation for warping. But, they usually cannot
work under large and complicated camera motions since
complementing information is essentially hard, especially
when they encounter oversimplified motion models. More-
over, the motion estimation steps are often computationally
inefficient and is unacceptable by real-time applications.

In this paper, we propose a new solution based on a widely
ignored feature of RS sensors—global reset (GR). This fea-
ture allows us to convert the old RS rectification problem

into a deblur-like one. Thus, we can throw away inaccurate
and time-consuming motion estimation steps and make the
problem easier to solve. It is because RSGR exposes all
pixels at the same time like GS rather than scanline by scan-
line with a constant time delay like conventional RS [21],
as Figure 1c shows. The varying exposure duration of dif-
ferent scanlines yields spatial-varying blur and brightness
when capture undergoes motion. This distortion is different
from pixel shifts of the RS sensor. Most RS sensors come
with this feature that allows them to use mechanical shut-
ters or strobe lights to overcome the distortion, like what
Bradley et al. [2] does to solve the RS distortion. We relax
the hardware requirements in a computational way, as shown
in Figure 2. To facilitate the development and evaluation
of data-driven algorithms, we build an optic system to take
paired RSGR/GS videos simultaneously. This system of-
fers our community a new dataset consisting of 79 paired
RSGR/GS video sequences captured under real scenes. We
further propose an new algorithm to tackle the unique dis-
tortion. Our method contains three main components: 1) a
spatial-aware feature encoder that extracts low-dimensional
feature representations for each input RSGR frame. It has
two special designs: exposure encoding (EE) and spatial at-
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Figure 2. The proposed method. a, We divide an incoming light into two same parts through a beam splitter and feed these splits into a
GS camera and an RSGR camera, respectively. Since the cameras are spatially aligned using a calibration tool and synchronized through
synchronization circuits (SC), we can record the light with two different exposure manners. b, We keep the first scanline’s exposure time
of GS and RSGR cameras to be equal. c, Given the RSGR video capture, our model outputs a corresponding GS video prediction in an
end-to-end fashion. We optimize the algorithm using the backpropagation (BP) technique by minimizing the error between the prediction
and the target GS video capture. As the target GS videos suffer from noises, we carefully chose the loss function to suppress the negative
effect. d, Our model is based on encoder-decoder structure. We employ EE and SA to generate spatial-sensitive feature maps. Given the
processed feature maps, we use dual temporal information aggregators to gather both long-term (e) and short-term temporal information (f).
They create powerful feature maps for the decoder to render clean GS videos. To keep the details, we use the residual connection.

tention (SA) [7] for producing spatial-sensitive feature maps.
2) a module with two recurrent neural networks (RNNs) [26]
to propagate long-term information along the time axis bidi-
rectionally. 3) a module stacked with a few convolutional lay-
ers (Conv), a deformable convolutional network (DCN) [4],
and a channel attention (CA) to fuse neighboring frames. We
experimentally demonstrate that the widely ignored global
reset feature enables us to recover clean GS videos from RS
sensors with existing image-to-image translation algorithms.
With specific designs, our algorithm achieves the best per-
formance. Especially, it can work under significant camera
motion where correspondences between two consecutive
frames are hard to estimate for RS solutions. Compared to
existing RS solutions, our solution without explicit motion
estimation is effective and efficient. Considering it is easy
to realize without changing the hardware, we believe our
solution can be an alternative to the RS solution. To sum up,
we make the following three contributions:

• Problem: we are the first to introduce RSGR, a widely
ignored feature, to our community. This feature enables
us to convert the old RS rectification problem into a
deblur-like one.

• Optic system and dataset: we build an optic system
that takes paired RSGR/GS videos and offer a new
dataset captured under real scenes. The large-scale
paired dataset enables developing and evaluating data-
driven methods. We release the dataset to facilitate
following researches1.

• Algorithm: we propose a novel algorithm for RSGR
video restoration. We experimentally demonstrate that
it can render clean GS videos from distorted RSGR
inputs and our integrated solution has the potential to
replace the RS solution.

1https://github.com/lightChaserX/neural-global-shutter



2. Method
2.1. Paired video acquisition system

Global reset is a widely ignored feature, and investigat-
ing how to restore clean GS videos from RSGR videos is
fresh. We are not aware of any dataset that contains RSGR
videos and their corresponding GS counterparts. As the
first attempt to crack this challenging nut, we build an optic
system (Figure 2a) that captures synchronized RSGR and
GS videos to facilitate developing and evaluating new algo-
rithms. The system employs a beam splitter to divide the
incoming light into two parts and feeds them into an RSGR
and a GS camera. These two cameras are spatially calibrated
with a calibration tool and synchronized through a synchro-
nization circuit (Figure 2b). Thus, they can capture the same
frames simultaneously. Besides, we also ensure the RSGR
camera’s exposure duration of the first scanline equals the
GS camera’s exposure duration. This system enables us to
develop data-driven algorithms. Note that, due to the installa-
tion restrictions in practice, the actual scanning direction of
all RSGR frames in this dataset is bottom-to-top. This will
not affect the effectiveness of an algorithm trained on thus
frames, as will be verified in the generalization evaluation.

2.2. Neural global shutter

Thanks to the global reset feature, we recover clean GS
videos from RS sensors in a deblur-like way. Thus, following
the common practice in image/video deblur, we employ
the encoder-decoder structure (Figure 2d). Nevertheless,
since the challenging RSGR distortion consists of spatial-
varying blur and brightness, we make three specific designs,
including the spatial-aware encoder, the long-term and short-
term temporal information aggregator.

Spatial-aware encoder. We use an encoder Eθ to extract
the low-dimensional representations {f it}St=1 for a given
video segment {xt}St=1. Our encoder Eθ operates on each
frame respectively. Two unique designs power its ability to
address spatial-varying distortions. First, we encode each
pixel’s exposure duration (EE) and feed them along with
the input frame into Eθ. The input xt, therefore, has four
channels. This design comes from our observation that the
RSGR distortion gradually changes and is relevant to the
exposure duration. Second, we integrate the spatial attention
(SA) mechanism [7] into the encoder Eθ for producing spa-
tially selective feature maps, further enabling us to embed
the position information. These two components enable the
encoder to be adaptive to the exposure duration.

Long-term temporal aggregator. Similar to most of ex-
isting video deblur methods use temporal information as an
essential cue, we leverage both the long-term and short-term
temporal information from the input video segment {xt}St=1.

Specifically, we aggregate long-term temporal information
{f it}St=1 with two RNNs bidirectionally. We first perform
forward information aggregation, with t increases from 1
to S, the output at time t is fat = Fa([f it ,h

a
t−1]), with

hat = Ha(fat ), where hat is the hidden state, [·, ·] denotes
concatenation operation along the channel axis2. We instan-
tiate Fa and Ha with residual blocks (RBs) [6] and residual
dense blocks (RDBs) [39]. The initial hidden state ha0 is set
to 0. Given the outputs from the forward aggregator, we then
perform backward information aggregation, with t decreases
from S to 1, the output at time t is f bt = Fb([f

a
t ,h

b
t+1]),

with hbt = Hb(f
b
t ). Likewise, Fb and Hb comprise RBs

and RDBs. The initial hidden state hbS+1 is set to 0. We
also tried to initialize hbS+1 with haS , but the results are un-
satisfactory. We propagate bidirectionally as we find that
using only one-directional temporal information will unbal-
ance different frames. It is even worse than without using
long-term temporal information.

Short-term temporal aggregator. We have incorporated
the long-term temporal information, while the short-term
(local) temporal information is also essential. We use a
sliding window to traverse the video segment. In the win-
dow, we implicitly align the center frame feature f bt and its
neighboring frame features {f bt±k}Kk=1 using a deformable
convolutional network (DCN) [4]. Given the aligned neigh-
boring features and the center feature, we concatenate them
along the channel axis. We use the channel attention (CA)
to learn to weight them and a convolutional layer (Conv) to
learn to fuse them3.

Decoder. Taking a refined feature map fot as input, the
decoder Dθ renders a clean GS image yt. To capture details,
we let our network to learn the difference ∆xt between the
generated image yt and the original image xt with a global
residual connection [6]: yt = xt + ∆xt.

Supervision. We train our network in a supervised fashion
using the target GS videos as the direct supervisory signal.
Specifically, we compute the differences between the ren-
dered video frames {yt}Tt=1 and its GS counterparts {ȳt}Tt=1.
But since GS videos often suffer from noises, we use the
perceptual loss [9] and SSIM loss [36] together to suppress
the negative effects caused by noisy supervision:

L = λ
∑
l

‖ψl(ȳt)− ψl(yt)‖1 + (1− λ)φ(yt, ȳt) , (1)

where ψl is the feature extracted from l-th layer of a pre-
trained VGG-19 network [29]; φ(·, ·) ∈ [0, 1] is 1 minus a
differentiable version of the SSIM [31]. The parameter λ

2We set the length of input video segment S to 8.
3We set the length of the window to 3, its stride to 1, and K to 1.



controls the balance between perceptual and SSIM compo-
nents, which is dynamically set. All of the errors resulting
from T frames are summarized together.

3. Experiments
3.1. Setup

Dataset. We use our contributed synthetic and real-world
datasets for the following experiments.
• Real-world dataset. Using the proposed optic system, we

collect the first RSGR dataset and the corresponding GS
ground truth. Our dataset consists of 79 video sequences
captured under real scenes. Each sequence consists of 300
consecutive frames with 640×640 spatial resolution. The
exposure time of the GS camera is 1ms, which is the same
as the exposure time of the first scanline of the RSGR
camera. Since the exposure time is short, the GS videos
are sometimes slightly noisy. We split the dataset into a
training set with 27 sequences and testing sets with 52 se-
quences. The testing sets have two parts. The smaller one
SET-I with 3 sequences share similar imaging conditions
with the training set, while the larger one SET-II with
49 sequences have worse imaging conditions, where GS
videos have noises. We use SET-I as validation set. Note
that prevalent datasets used for RS correction and GS de-
blur either are synthesized [16,32], having significant gaps
from real datasets or have no ground truth [43], which are
hard for developing and evaluating data-driven algorithms.
Unlike them, we capture real scenes with aligned ground
truth (GT). We deliver them to the community to facilitate
subsequent researches.

• Synthetic dataset. We synthesize 25 video sequences for
each of the GS, RS, and RSGR exposures. Each video has
29 frames with 512×512 resolution. The scan directions
are top-to-bottom (↓). The first scanlines of a correspond-
ing GS, RS, and RSGR frame are exposed simultaneously
and with the same duration. During synthesizing RSGR
videos, we use a parameter ξ to determine the ratio be-
tween readout time and the first scanline’s exposure dura-
tion. We synthesize RSGR videos with 8 different ξ for
both training and testing.

Evaluation metrics. Our optic system offers the conve-
nience of using captured GS videos as GT to assess different
algorithms. The Peak Signal-to-Noise Ratio (PSNR) and the
Structural Similarity Index Measure (SSIM) [36] are used
as metrics. We calculate them with a single video frame.
Considering the distortion is spatial-varying, we also divide
the video frame into parts for evaluation.

3.2. External comparison

Comparison with other algorithms. Since this problem
is unexplored, we compare our algorithm with several closely

related algorithms from four different categories: 1) unsu-
pervised GS image-based deblur algorithm that uses adver-
sarial training to get rid of the paired training data: deblur-
GANv2 [11]; 2) supervised GS image-based deblur algo-
rithm that integrates multi-scale reception fields: SRN [33];
3) supervised GS video-based deblur algorithms that lever-
ages the temporal information by fusing neighboring frames
or with an RNN: STRCNN [8], DBN [32], IFIRNN [20], and
ESTRNN [40]; and 4) supervised RS correction or deblur
methods that end-to-end estimate motion and compensate
distortion: DSUR [16] and JCD [41].

Table 1 reports the qualitative results. We observe that
all algorithms except for deblurGANv2 improve the origi-
nal videos. It demonstrates that supervised image-to-image
translation algorithms can remove the RSGR distortion. But,
as verified by Liu et al. [16], they cannot correct the RS
distortions since a rectified pixel in the virtual GS image
might lie far away from its corresponding pixel in the input
RS image. The RS distortion correction requires accurately
estimated motion. Moreover, our algorithm achieves the
best performance. It consistently outperforms others with a
large margin on all evaluation metrics. Especially, opposite
to other algorithms that tend to improve only high-quality
inputs captured without motion, textureless frames, etc., our
algorithm improves not only the high-quality inputs but also
the low-quality counterparts (see supplemental material).
We suppose it is because the competing algorithms target
RS or GS inputs with the same exposure duration for ev-
ery pixel. Differently, our RSGR video has gradually in-
creased exposure duration along the scan direction, leading
to spatially-varying blur and brightness distortion. Our tai-
lored algorithm incorporates a spatial-aware encoder and
dual temporal information aggregators to achieve the best
performance for correcting the RSGR distortion.

Figure 3 presents qualitative results. Similar to quanti-
tative results, we find that our algorithm renders visually
pleasing results that are better than other algorithms. It
corrects mixed spatial-varying blur and brightness without
introducing additional distortions. Remarkably, thanks to
our carefully selected loss function, our rendered videos are
noise-free even though there are noises in the supervisory
signal. Unfortunately, other algorithms not for this problem
have sub-optimal performance. They fail to remove the dis-
tortions perfectly like us and even bring some artifacts, e.g.,
geometric deformations, color distortions, and noises. For
example, deblurGANv2 introduces noises due to adversarial
training with noisy supervision. STRCNN and DBN intro-
duce color distortions. IFIRNN and JCD yield geometric
deformations owing to the large spatial-varying blur.

Comparison with using other knowledge. We have il-
lustrated that our tailored architecture is superior in RSGR
correction. But, it should be noted that besides the archi-



Table 1. Quantitative comparison. The performance is measured with mean PSNR/SSIM (higher is better). ‘F’ denotes evaluation using
full-size frames, while ‘U’, ‘M’ and ‘L’ represent using only 200 rows of pixel from the top, middle, and bottom of each frame, respectively.
†Training DSUR on our task from scratch is difficult. Thus we fine-tune it, unlike other algorithms trained from scratch here. ‡Our model
without using temporal information. Bold texts indicate the best method for each metric.

SET-I SET-II

Method F U M L F U M L

Input 18.95 / 0.75 25.32 / 0.82 21.56 / 0.81 16.36 / 0.63 17.82 / 0.73 23.64 / 0.77 21.45 / 0.77 15.54 / 0.66
deblurGANv2 [11] 19.97 / 0.73 21.54 / 0.75 23.73 / 0.77 18.17 / 0.69 18.34 / 0.69 20.14 / 0.69 22.14 / 0.71 17.28 / 0.66
SRN [33] 26.87 / 0.86 26.12 / 0.83 27.08 / 0.85 29.59 / 0.89 25.05 / 0.81 24.32 / 0.79 25.65 / 0.81 27.02 / 0.83
STRCNN [8] 24.88 / 0.85 24.27 / 0.83 25.33 / 0.85 27.54 / 0.88 22.59 / 0.81 22.99 / 0.79 23.46 / 0.81 23.66 / 0.83
DBN [32] 26.49 / 0.87 26.50 / 0.85 26.66 / 0.87 28.47 / 0.89 22.57 / 0.81 23.24 / 0.80 23.81 / 0.81 23.24 / 0.82
IFIRNN [20] 28.01 / 0.89 27.20 / 0.88 28.35 / 0.89 29.21 / 0.90 25.17 / 0.82 24.77 / 0.80 25.62 / 0.81 26.94 / 0.84
ESTRNN [40] 25.85 / 0.89 26.67 / 0.88 30.16 / 0.90 25.19 / 0.89 22.72 / 0.83 23.42 / 0.81 26.03 / 0.83 22.86 / 0.83
DSUR† [16] 24.72 / 0.84 24.30 / 0.81 25.65 / 0.85 26.63 / 0.86 22.50 / 0.80 22.49 / 0.78 23.87 / 0.81 23.38 / 0.83
JCD [41] 28.15 / 0.85 27.50 / 0.84 28.73 / 0.85 30.44 / 0.87 25.33 / 0.80 24.77 / 0.78 25.71 / 0.80 27.43 / 0.83

Ours-noT‡ 27.56 / 0.85 26.23 / 0.83 27.55 / 0.85 31.55 / 0.88 25.37 / 0.80 24.74 / 0.77 25.65 / 0.79 27.29 / 0.82
Ours 32.72 / 0.92 31.83 / 0.92 33.01 / 0.92 34.65 / 0.92 27.29 / 0.85 26.96 / 0.84 27.57 / 0.85 28.35 / 0.86

Input deblurGANv2 [11] SRN [33] Ours-noT STRCNN [8] DBN [32]

IFIRNN [20] ESTRNN [40] DSUR [16] JCD [41] Ours GT

Figure 3. Qualitative results. Note that the scan direction is bottom-to-top (↑).

tecture, there also exists another factor accounting for this
success: the paired training data, which gives our model suf-
ficient supervision to learn the task-specific knowledge. We
seek to figure out if others can replace the knowledge. First,
we compare RSGR correction using our end-to-end learned
knowledge with that borrowed from other tasks (models with
pre-trained weights) directly, including RS correction [16],
RS deblur [41], GS motion deblur (MT-deblur) [11], and GS
out-of-focus deblur (OF-deblur) [13]. From the results in
Figure 4, we observe that although using pre-trained knowl-
edge directly relaxes the requirement for a paired dataset,
they cannot deal with the spatial-varying brightness and
blur. Especially, the spatial-varying blurs lead to annoy-
ing geometric distortions. The results confirm our required
knowledge is different from other tasks. Second, we use
handcraft knowledge instead of learning-based knowledge to

correct the spatial-varying brightness distortion. The result
is frustrating. Third, we train two unsupervised methods,
i.e., CycleGAN [42] and deblurGANv2 [11] without paired
data. The results verify our required knowledge cannot be
replaced by unsupervised knowledge. Accordingly, we build
the optic system and paired data with incredible efforts.

Comparison with RS solution. We argue that our solu-
tion is better than the RS solution. 1) Formulation. With the
global reset feature, we convert the RS rectification problem
into a deblur-like one, which can be solved with image-
to-image translation algorithms while the RS rectification
cannot. 2) Effectiveness. The results in Figure 5 show that
our RSGR solution outperforms the RS solution. Especially,
our solution is good at dealing with significant motion (lower
neighboring PSNR/SSIM). We also find that our solution



RS deblurInput

GTOurs

RS rectification GS MT-deblur GS OF-deblur

Handcraft CycleGAN deblurGANv2

Figure 4. Comparison with using different knowledge. Note
that the scan direction is bottom-to-top (↑).

goes ahead of the RS solution with a large margin when
ξ is small, indicating a large exposure duration. Although
our performance decays with the increase of ξ, we are still
superior to the RS solution. Considering it is not always
to require a large ratio ξ unless we need to capture high-
speed videos, our solution is possible to replace RS solution
in actual video capture. 3) Efficiency. In addition to ac-
curacy, our solution without explicit motion estimation is
also more efficient than existing RS solutions. Classical
two-frame-based RS correction methods often require a few
minutes. Zhuang et al. [43] processing a 640×480 resolution
frame requires 400 seconds, DSUR requires 0.43 seconds,
JCD requires 0.83 seconds, but we only need 0.04 seconds4.
Considering its effectiveness and efficiency, we believe our
RSGR solution can replace RS solutions.

3.3. Internal comparison

Architecture ablation. We conduct ablation experiments
on our network architecture by implementing 9 different
variants to explore the effectiveness of each module. From
the results in Table 2, we have three main findings. First,
removing any of the components of our method will weaken
the performance. The result verifies that all components
are necessary. Second, using spatial-aware modules (T6)
has better performance than using only the temporal coun-
terparts (S3). We argue that this is because the power of
the temporal information aggregators relies on clean feature
maps produced by spatial-aware encoders. With the spatial-
aware design, the aggregators would gather distorted feature
maps and lose their effectiveness. Third, we surprisingly
find that using only one path of the long-term aggregator
(T1) is worse than using full (ours) and without using the
long-term temporal aggregator (T2). We assume this is be-
cause our algorithm uses long-term and short-term temporal

4We conduct all run-time comparisons of DL-based methods, i.e. DSUR,
JCD, and ours on the same machine with NVIDIA Tesla V100 GPU and In-
tel(R) CPU@3.80GHz. The run-time result of Zhuang et al. [43] borrowed
from DSUR is based on an Intel Core i7-7700K CPU.
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Figure 5. Comparison with RS solution. We train and evaluate
DSUR [16] with synthesized RS videos as inputs and synthesized
GS videos as supervision. Likewise, we train and evaluate our
model with 8 different RSGR videos, synthesized with different ξ.
We use neighboring metrics to represent the motion degree.

information together. When we gather the long-term infor-
mation from one direction, the information imbalance in a
video sequence will trouble the short-term aggregation. Con-
sequently, our long-term and short-term aggregators gather
information from forward and backward directions and yield
the best performance.

Loss ablation. We also verify the effectiveness of different
loss functions in Figure 6, including the perceptual loss [9],
the gradient loss [18], the Charbonnier loss [3] and the SSIM
loss [36]. We find that all losses other than the SSIM loss
result in different artifacts. It is because there exist noises
in the supervisory signal. This phenomenon also appears in
the adversarial loss. Besides, the perceptual loss has the best
performance in structure restoration since it operates on the
feature level. Therefore, we combine the SSIM loss and the
perceptual loss, leading to the best results.

3.4. Practicality evaluation

Our RSGR solution works well on real applications.
Firstly, the rendered results are not only visually pleasing but
also applicable to downstream tasks. In Figure 7, we perform
single image depth estimation [23] and edge detection [17].
The results reveal that although downstream tasks act worse
on original RSGR videos captured undergoing motion, our
produced virtual GS videos significantly improve them. The



Table 2. Ablation experiments of different architectures. Nota-
tions: S1 is our model without (w/o) EE; S2 is w/o SA; S3 is w/o EE and
SA; T1 is w/o the backward path of the long-term aggregator; T2 is w/o the
long-term aggregator; T3 is replacing DCN of our model with Conv; T4 is
combination of T2 and T3; T5 is T4 replacing CA with Conv; T6 is T5 w/o
short-term temporal information.

Exp. F U M L

ours 32.72 / 0.92 31.83 / 0.92 33.01 / 0.92 34.65 / 0.92

S1 32.53 / 0.91 31.28 / 0.90 32.45 / 0.91 34.56 / 0.91
S2 26.51 / 0.90 28.58 / 0.90 30.67 / 0.92 25.66 / 0.89
S3 25.09 / 0.89 25.39 / 0.88 29.56 / 0.91 24.70 / 0.89

T1 31.76 / 0.90 30.60 / 0.89 32.15 / 0.90 34.10 / 0.91
T2 31.99 / 0.90 30.89 / 0.89 32.37 / 0.91 34.47 / 0.91
T3 31.70 / 0.90 30.68 / 0.89 31.99 / 0.90 33.83 / 0.91
T4 31.25 / 0.90 29.91 / 0.89 31.58 / 0.90 34.10 / 0.91
T5 29.31 / 0.89 28.12 / 0.88 29.75 / 0.89 32.48 / 0.90
T6 27.56 / 0.85 26.23 / 0.83 27.55 / 0.85 31.55 / 0.88

input 18.95 / 0.75 25.32 / 0.82 21.56 / 0.81 16.36 / 0.63

GradientPerceptual Charbonnier SSIM GTInput

Figure 6. Ablation experiments of different losses. Top patches
have 37×37 resolution and bottom patches have 140×129 resolution.
They come from the same frame.

performance is even comparable to that of using GS videos.
Secondly, our algorithm has a favorable generalization abil-
ity. The results in Figure 8 prove that our algorithm trained
on a specific RSGR camera can be applied directly to a dif-
ferent RSGR camera. In addition, the results of SET-II (as
Table 1 shows) can demonstrate the generalization ability of
our algorithm across different imaging conditions. We still
outperform other methods with a large margin when the test-
ing set has different imaging conditions from the training set.
Thirdly, as discussed in Section 3.2, our solution is efficient.
Without explicit motion estimation, it is ×10 faster than the
state-of-the-art RS solution DSUR [16].

4. Conclusion

This paper first attempts to restore clean GS videos from
the RS sensor with the widely ignored global reset feature.
We build a new optic system and capture a new dataset
with it. Based on the dataset, we developed a data-driven
algorithm. We experimentally demonstrate, with this feature,
we can convert the RS rectification problem into a deblur-like
one, getting rid of the non-trivial motion estimation steps.
The results also verify that our tailored algorithm achieves

FD(Input) FD(Ours) FD(GT) FE(Input) FE(Ours) FE(GT)

Figure 7. Downstream applications. We apply two tasks with
pre-trained models including FD: the single image depth estima-
tion [23] and FE: the edge detection [17] on the original RSGR,
our corrected RSGR, and the GS video frames.

Input Output

Figure 8. Generalization evaluation. We train our model on a
certain RSGR camera and test it on another different RSGR camera,
which has different exposure time, readout time, resolution, etc.
Note that the scan direction is top-to-bottom (↓).

the best performance, potentially applying to real scenarios.
Compared to the RS solution, our solution is effective and
efficient. Considering it is easy to realize without changing
the hardware, we believe our RSGR solution can replace the
RS solution.

Limitations. Although we advocate RSGR over standard
RS solution, it should be noted that RS videos do not suffer
from any distortion in the completely static situation, yet
RSGR still has intensity variations. Although our proposed
algorithm can compensate it somehow, we suggest using our
RSGR solution for dynamic scenarios. Relating to the point
above, the last scanning lines of RSGR are more likely to be
overexposed. We thus recommend adjusting the exposure
time of RSGR properly. We also believe that the dynamic
range might be improved by leveraging no-local exposure
variations of RSGR. We leave it to our future work.
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