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Abstract
One-shot subset selection serves as an effective
tool to reduce deep learning training costs by iden-
tifying an informative data subset based on the
information extracted by an information extractor
(IE). Traditional IEs, typically pre-trained on the
target dataset, are inherently dataset-dependent.
Foundation models (FMs) offer a promising al-
ternative, potentially mitigating this limitation.
This work investigates two key questions: (1) Can
FM-based subset selection outperform traditional
IE-based methods across diverse datasets? (2) Do
all FMs perform equally well as IEs for subset se-
lection? Extensive experiments uncovered surpris-
ing insights: FMs consistently outperform tradi-
tional IEs on fine-grained datasets, whereas their
advantage diminishes on coarse-grained datasets
with noisy labels. Motivated by these finding, we
propose RAM-APL (RAnking Mean-Accuracy
of Pseudo-class Labels), a method tailored for
fine-grained image datasets. RAM-APL lever-
ages multiple FMs to enhance subset selection by
exploiting their complementary strengths. Our ap-
proach achieves state-of-the-art performance on
fine-grained datasets, including Oxford-IIIT Pet,
Food-101, and Caltech-UCSD Birds-200-2011.

1. Introduction
Subset selection, also known as coreset selection (Zheng
et al., 2023; Wan et al., 2024b), has become an effective
approach to improve model training efficiency by identi-
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Figure 1. Comparison of pipelines for one-shot subset selection.
(a) Traditional pipeline (He et al., 2024): Relies on a model pre-
trained on the full training set of the target task to extract data
information, but this introduces dataset dependency and additional
pre-training time. (b) Pipeline with a single foundation model (Xie
et al., 2023): Replaces the small pre-trained model with a single
FM, potentially mitigating dataset dependency. As shown in (c),
on fine-grained datasets, using a single FM as an IE is significantly
and consistently superior to using traditional IE, and improves the
performance of subset selection at different sampling rates.

fying a small, representative subset of training data with-
out significantly compromising model performance. This
task is particularly important in scenarios involving large-
scale datasets (Wan et al., 2024a; Wang et al., 2025; Jia
et al., 2025), where full dataset training is computationally
prohibitive. Subset selection methods can be broadly cate-
gorized into one-shot (Xia et al., 2024; Yang et al., 2024)
and adaptive approaches (Karanam et al., 2022; Killamsetty
et al., 2022). In this work, we focus on one-shot subset
selection, which identifies subsets in a single pass, offer-
ing computational advantages over adaptive methods that
require iterative selection during model training.

Traditional one-shot subset selection methods typically rely
on a pre-trained model as an information extractor (IE) to
derive data characteristics such as features, gradients, or
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uncertainty scores. These characteristics are then used to
identify the most representative subset. While numerous
strategies—such as feature-based (Agarwal et al., 2020;
Sener & Savarese, 2017), uncertainty-based (Coleman et al.,
2019; Wu et al., 2024), and gradient matching-based ap-
proaches (Mirzasoleiman et al., 2020)—have been proposed,
these methods fundamentally depend on pre-trained mod-
els obtained by training on the full dataset of the target
task, as shown in Figure 1 (a). This inherently introduces
significant dataset dependency, which limits their applica-
bility, particularly in large-scale data scenarios. Efforts
to reduce this dependency, such as employing lightweight
proxy models (Coleman et al., 2019) or minimizing pre-
training epochs (Guo et al., 2022), only partially mitigate
the computational burden without fundamentally addressing
the dataset dependency issue.

Recent advancements in foundation models (FMs), such as
pre-trained vision models (Caron et al., 2021; Oquab et al.,
2023) and vision-language models (Radford et al., 2021;
Zhai et al., 2023; Sun et al., 2023), offer a promising al-
ternative. A natural alternative to subset-based methods is
fine-tuning or adapting FMs to the target dataset (Ding et al.,
2023). While these approaches leverage pre-trained knowl-
edge, they still require full-dataset access during fine-tuning,
which undermines the computational efficiency that subset
selection seeks to achieve. Moreover, these methods often
face challenges such as overfitting on noisy datasets (Feng
et al., 2024) and scalability issues on large datasets. In
contrast, subset-based methods decouple the data selection
process from task-specific training, enabling efficient learn-
ing without full-dataset reliance. With their robust general-
ization capabilities, FMs can serve as direct alternatives to
traditional IEs, enabling dataset-agnostic subset selection
pipelines, as illustrated in Figure 1 (b). Unlike traditional
pipelines that rely on task-specific pre-training, FM-based
pipelines eliminate the need for task-specific pre-training,
making them well-suited for large and diverse datasets. De-
spite their potential, the advantages of FM-based pipelines
over traditional methods remain under-explored. While
some studies (Xie et al., 2023; Killamsetty et al., 2023) have
investigated this approach, prior work (Xie et al., 2023) has
revealed that simply using FMs for subset selection does not
consistently lead to superior performance. This highlights
critical open questions: Can FMs truly replace task-specific
IEs in subset selection? If so, under what conditions?

In this paper, we conduct extensive experiments to inves-
tigate the strengths and limitations of using FMs as IEs
for subset selection. Detailed experimental statistics and
analyses can be found in Single Model Study section. Our
experiments on subset selection using three kinds of models
as IEs on five different types of image datasets, i.e., CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-10N-worse (CIFAR-
10N) (Wei et al., 2022), CIFAR-10-imbalance (CIFAR-

10I) (Cui et al., 2019), Oxford-IIIT Pet (Pet) (Parkhi et al.,
2012)) and Oxford-IIIT Pet-N (Pet-N), revealed surpris-
ing findings: (1) FMs consistently outperform traditional
IEs on both clean and noisy fine-grained datasets; and (2)
FMs demonstrate limited advantages for subset selection on
coarse-grained datasets with noisy labels.

While FMs are well-suited for fine-grained datasets, the op-
timal choice of FM as a feature extractor for subset selection
remains an open question. Moreover, existing feature-based
methods fail to comprehensively analyze feature distribu-
tions from both intra- and inter-class perspectives, result-
ing in suboptimal selection performance. To address these
limitations, we introduce a novel subset selection pipeline
that leverages multiple FMs with unknown selection per-
formance to enhance fine-grained dataset selection. Our
proposed RAM-APL method integrates diverse FMs (i.e.,
DINOv2 and CLIP) and quantifies data importance through
a systematic analysis of feature distributions across both
intra- and inter-class levels, achieving state-of-the-art per-
formance on three fine-grained image datasets.

The contributions of our work are three-fold:

• An in-depth study on the strengths and limitations of
foundation models compared to traditional information
extractors for subset selection reveals that foundation
models consistently outperform traditional IEs on fine-
grained datasets, whereas their advantage diminishes
on coarse-grained datasets with noisy labels.

• A novel subset selection pipeline employing multi-
ple foundation models with unknown selection per-
formance as IEs is proposed for fine-grained image
datasets. RAM-APL, an effective subset selection
method, is designed based on the novel pipeline.

• Extensive experiments verify the superiority of RAM-
APL on three fine-grained image datasets. Specifi-
cally on the Caltech-UCSD Birds-200-2011 dataset,
RAM-APL achieves an average improvement of 6.4%
in prediction accuracy over Random method across all
sampling rates.

2. Related Works
Current one-shot subset selection methods typically fol-
low a traditional selection pipeline, which consists of an
information extractor, a measurer, and a selector. Various
measures have been proposed to leverage the information
provided by the extractor to assess data importance, includ-
ing feature-based (Agarwal et al., 2020; Sener & Savarese,
2017), gradient-based (Kothawade et al., 2022; Killamsetty
et al., 2021a), training dynamic-based (Toneva et al., 2018;
Swayamdipta et al., 2020; He et al., 2024; Zhang et al.,
2024) and other weighting strategies (Zhou et al., 2020;
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Coleman et al., 2019; Zheng et al., 2022). Regardless of
the above methods, their extractors are usually trained to
converge on the full training set of the target task, rendering
the pre-trained extractor data-dependent and limiting the
applicability of subset selection to new large-scale datasets.
For example, TDDS (Zhang et al., 2024) required 90 epochs
of extractor training on ImageNet-1K to gather training dy-
namics, surpassing the 60 epochs needed for training the
target model on the coreset. To solve this problem, Coleman
et al. (Coleman et al., 2019) designed a small proxy model
to perform data selection, achieving significantly faster pre-
training. Guo et al. (Guo et al., 2022) proposed to pre-train
a model for a small number of epochs. However, they do not
break free from dataset dependency. Recently, some stud-
ies (Xie et al., 2023; Killamsetty et al., 2023) have explored
using foundation models (FMs) as IEs for data selection,
showing promise in addressing dataset dependency. Nev-
ertheless, neither study has conclusively demonstrated that
FMs outperform traditionally trained IEs. Specifically, (Xie
et al., 2023) found that simply utilizing an FM does not
guarantee superior data selection performance, raising ques-
tions about the viability of FMs as substitutes for traditional
IEs. Our comprehensive investigation reveals that FMs uni-
versally dominate traditional IEs on fine-grained datasets
(both clean and noisy), while their advantage diminishes
on coarse-grained datasets with noisy labels. Furthermore,
the contribution of an FM to subset selection varies across
datasets. To maximize the potential of FMs for fine-grained
subset selection, we propose strategically combining multi-
ple FMs with complementary capabilities.

Since only features can be obtained from each FM, how to ef-
fectively use the unaligned features extracted from multiple
FMs to measure and select data is the key problem. Existing
feature-based subset selection methods can be classified into
two main categories: geometry-based methods (Welling,
2009; Sener & Savarese, 2017; Xia et al., 2023) and deci-
sion boundary-based methods (Ducoffe & Precioso, 2018;
Margatina et al., 2021). For geometry-based methods, stud-
ies (Welling, 2009; Sener & Savarese, 2017) selected sam-
ples whose distributions are not close to each other in fea-
ture space so that subsets do not have redundant information.
These subsets usually make the model a good generaliza-
tion. However, they treat samples whose distributions are
not close to each other with equal importance, making sub-
set selection for fine-grained datasets disregard inter-class
distribution differences. Decision boundary-based meth-
ods select data close to the decision boundary, which is
a time-consuming and biased selection process that is not
beneficial for model generalization. Taking the best of both
types of methods, we propose the subset selection method
RAM-APL for fine-grained datasets.

3. Preliminary: Subset Selection
In downstream tasks such as image classification and
recognition, we consider a large-scale training set D =
{I1, . . . , IN} with a dataset size N, where each sample
Ii = (xi, yi) consists of input data xi and its corresponding
class label yi ∈ {1, . . . , C}. In scenarios where there’s a
specified budget p, subset selection is used to identify a
subset S of D that contains the most informative data for
the target downstream task. It is expected that the model
θS trained on S can perform on par with the model θD

trained on D. The performance of subset selection is eval-
uated by the performance of model θS on the test set of
the target downstream task. The subset S = {I1, . . . , IM}
has a size M , where M < N , and the sampling rate for
subset selection is defined as p = M/N . In the practical
study, p is pre-specified, and the subset S is selected with
the expectation of maximizing the target model’s accuracy
while adhering to the budget constraint.

Subset selection relies on an Information Extractor (IE)
to extract information from each sample, which is then
used to assess the importance of the sample and select the
most informative data. Traditionally, the IE is a model pre-
trained on the full training set, which inherently introduces
dataset dependency, limiting the applicability of this ap-
proach across different datasets. To address this limitation,
a more flexible and generalizable approach is necessary, and
it is therefore crucial to explore alternatives that reduce or
eliminate dataset dependency.

4. Single-Model Study
Foundation Models (FMs) have recently emerged as a
promising alternative to traditional information extractors
(IEs) for subset selection. However, the advantages of FM-
based selection over conventional methods remain largely
unexplored. In this section, we investigate whether a single
foundation model can effectively replace traditional IEs and
address the following two key questions: Question 1: In
which cases are foundation models most effective, and in
which cases are they not? Question 2: Do all FMs per-
form equally? Our extensive experiments reveal several key
findings:

• Observation 1: FMs demonstrate limited advantages
for subset selection on noisy, coarse-grained datasets.

• Observation 2: Conversely, FMs significantly and con-
sistently outperform traditional IEs for subset selection
on fine-grained datasets (both clean and noisy).

• Observation 3: Different FMs perform differently as
information extractors for subset selection.

Inspired by Observations 2 and 3, we propose a FM-based
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algorithm for superior fine-grained subset selection, which
is elaborated in Section 5. In subsequent paragraphs, we
provide detailed explanations for these observations.

Experimental Setting. To assess the applicability of foun-
dation models as information extractors (IEs), we conducted
subset selection experiments using a single model as the IE
across five distinct image datasets: CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-10N-worse (CIFAR-10N) (Wei et al.,
2022), CIFAR-10-imbalance (CIFAR-10I) (Cui et al., 2019),
Oxford-IIIT Pet (Pet) (Parkhi et al., 2012)) and Oxford-IIIT
Pet with 20% symmetric label noise (Oxford-IIIT Pet-N,
abbreviated as Pet-N). We apply three kinds of models for
feature extraction in subset selection respectively. Three
kinds of models are: (1) models pre-trained on the target
training dataset for ten epochs (Guo et al., 2022), referred to
as model-TD. Once the target task changes, the model needs
to be pre-trained again; (2) models pre-trained on Tiny-
ImageNet (TIN) (Krizhevsky et al., 2012) for ten epochs,
referred to as model-TIN. TinyImageNet is a larger classifi-
cation dataset, models pre-trained on it possess a stronger
representation ability compared to those pre-trained on tar-
get datasets. Given this, we think that model-TIN has the po-
tential to serve as an alternative to traditional IEs without re-
training when the target task changes; and (3) a single foun-
dation model (i.e., DINOv2, CLIP, SigLIP, or EVA-CLIP).
To explore the impact of the above three kinds of models
as IEs on selection algorithms, we implement four classical
algorithms, i.e., MIN, K-center Greedy (KCG) (Sener &
Savarese, 2017), Graph Cut (GC) (Iyer et al., 2021) and
Moderate DS (MDS) (Xia et al., 2023) over the extracted
features. Besides, we use each selection algorithm to se-
lect training samples with various sampling rates (i.e., 10%,
30%, and 50%), and train target models over the selected
subsets. Due to the limited page, we provide the detailed ex-
perimental setup and results in the Supplementary Material.

We analyzed which of the three single models served as
the most effective IE across four subset selection methods
and three sampling rates. The frequency of each type of
single model being the optimal IE under 12 settings on
each dataset is presented in Figure 1 (c). Surprisingly, we
found that directly using features extracted from the FM for
subset selection does not consistently outperform features
extracted from traditional pre-trained models.

(Observation) FMs demonstrate limited advantages for
subset selection on noisy, coarse-grained datasets. In
contrast, FMs consistently outperform traditional IEs
for subset selection on both clean and noisy fine-grained
datasets. In the case of selecting CIFAR-10N, the FM
only emerged as the optimal IE in 4 out of 12 experimental
setups. Conversely, the FM performed well on the other
four datasets, especially on the Pet and Pet-N. For subset
selection on CIFAR-10, the FM was the optimal IE in 6
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Figure 2. Relationship between foundation model performance
on the target task and subset selection performance using that
FM as IE. Superior target task accuracy does not necessarily lead
to better subset selection performance across different foundation
models and selection methods.

out of 12 experimental setups, but the best result at each
sampling rate was achieved using model-TIN as the IE.
In the case of CIFAR-10I, the FM was optimal in 8 out
of 12 experimental setups, but at a low sampling rate of
1%, model-TD yielded the best results. Encouragingly, the
single FM performed best in 9 out of 12 experimental setups
on the Pet and Pet-N datasets and achieved the best results
across all sampling rates. Thus, the FM presents a viable
alternative to traditionally trained IEs for fine-grained image
datasets. The Single-Model Study on more coarse- and fine-
grained tasks shows the same conclusions, as summarized
in the Supplementary Material.

(Observation) Different FMs perform differently as in-
formation extractors for subset selection, and the supe-
rior performance of FMs on downstream tasks does not
guarantee better subset selection effects. Various FMs are
available, including DINOv2, CLIP, SigLIP, and EVA-CLIP.
If the method is to be designed for fine-grained datasets
according to the subset selection pipeline (b), an optimal
FM needs to be identified first as the IE. An intuitive idea is
to identify the optimal FM by testing each on the target task,
with the best-performing FM chosen as the IE. However,
we observe that superior performance on the downstream
task does not guarantee better subset selection. As shown
in Figure 2, although EVA-CLIP has strong zero-shot clas-
sification on Pet, it is not optimal for any selection method.
Furthermore, our experiments indicate that the optimal FM
as the IE varies depending on factors such as target datasets,
selection methods, and sampling rates. For instance, Fig-
ure 2 demonstrates that for selecting 50% of the Pet dataset,
DINOv2 performs best as the IE for the MIN method, while
CLIP excels for the KCG method. Additional analyses of
optimal FMs across sampling rates are presented in the Sup-
plementary Material. Therefore, Pipeline (b) requires an
additional step to identify the best FM to achieve the most
effective performance across different scenarios. This un-
doubtedly introduces an optimization detour, diverting focus
from the primary goals of data measurement and selection.
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While FMs are well-suited for fine-grained datasets, the
optimal choice of FM as an feature extractor for FM-based
subset selection remains an open question. Moreover, exist-
ing feature-based methods fail to comprehensively analyze
feature distributions from both intra- and inter-class perspec-
tives, resulting in suboptimal selection performance. To ad-
dress these limitations, we explore a novel subset selection
pipeline that directly employs multiple FMs with unknown
individual contributions as IEs. Building on our pipeline, we
propose the RAM-APL method, achieving state-of-the-art
performance on multiple fine-grained datasets.

5. Proposed Method: RAM-APL
We are the first to investigate selection with multiple founda-
tion models. In this section, we mainly propose a baseline
method with multiple models as feature extractors. We in-
troduce the problem formulation in Section 5.1. The subset
selection method is then explained in detail in Section 5.2,
which includes two metrics, namely ranking mean and ac-
curacy of pseudo-class labels.

5.1. Problem Formulation

Multiple foundation models MF are used to extract in-
formation of training data in our method, where MF =
{M1

F , . . . ,M
m
F }. Foundation models can be directly used

as feature extractors, but features of the same samples ex-
tracted by different models are not aligned. Therefore, the
two key challenges in our method design are effectively fus-
ing features and accurately measuring sample importance
based on the fused representations.

5.2. Method

The primary challenge in learning from fine-grained image
datasets lies in their large intra-class differences and small
inter-class differences. Existing subset selection methods
either emphasize intra-class distribution while overlook-
ing inter-class similarities or focus on decision-boundary
samples while neglecting samples from other distributions
within the class. To address these limitations, we propose
RAM-APL, a selection method that quantifies data impor-
tance by jointly considering both intra-class and inter-class
distributions.

Feature Extraction Given a fine-grained image dataset
D, we extract features using multiple FMs M i

F , where
i ∈ {1, . . . ,m}. The extracted feature set is denoted as
F = [F1, . . . ,Fm], where F i = [F i

1 , . . . ,F
i
N ] represents

the feature representations of D obtained from the ith foun-
dation model M i

F . Each feature vector F i
j ∈ RKi for a data

sample Ij is defined as: F i
j =

[
f i,0
j , f i,1

j , . . . , f i,Ki−1
j

]
∈

RKi , where Ki represents the feature dimensionality of the

ith model. Since FMs may produce features of varying di-
mensions, their representations are not necessarily aligned.

RAnking Mean (RAM) RAM maps features extracted
by different foundation models from their unaligned feature
spaces into a distance ranking space (an aligned space),
facilitating the evaluation of data importance based on intra-
class distribution.

After acquiring the feature set F , we map the fea-
tures extracted by each foundation model to a distance-
ranking space. Specifically, given the feature set F i =
[F i

1 , . . . ,F
i
N ] from foundation model M i

F , we define the
central feature of class c as the mean feature vector:

F̃
i

c =
1

|S|
∑
j∈S

F i
j , (1)

where S represents the set of indices belonging to class c.
The Euclidean distance between a sample F i

j and its class
center F̃ i

c serves as a measure of representativeness, with
smaller distances indicating higher representativeness (Xia
et al., 2023):

d
(
F i
j , F̃

i
c

)
= ∥F i

j − F̃ i
c∥2, (2)

where ∥·∥2 denotes the Euclidean norm. Samples are ranked
within each class according to their computed distances,
producing ranked values Ri = [ri1, . . . , r

i
|S|] for model

M i
F , where rij ∈ Z+ and smaller values indicate closer

distances. This process is repeated for all m foundation
models, mapping unaligned features into a unified distance-
ranking space. The final ranking mean of class c is denoted
as:

Rc = [r1, . . . , r|S|], (3)

where rj = 1
m∗|S|

∑m
i=1 r

i
j ∈ [0, 1] represents the normal-

ized ranking mean for sample Ij . A smaller normalized
ranking mean indicates greater alignment with class pro-
totypes across foundation models. Visual analyses in the
Supplementary Material further reveal that samples with
lower normalized ranking means tend to exhibit more dis-
tinct target objects and simpler backgrounds.

Accuracy of Pseudo-class Labels (APL) APL maps fea-
tures extracted by various foundation models from their un-
aligned feature space into a pseudo-class confidence score
based on the unified inter-class distance ranking.

After obtaining the feature set F , we assign pseudo-class
labels to features extracted from each foundation model
separately. Specifically, given the feature set F i =
[F i

1 , . . . ,F
i
N ] from foundation model M i

F , we first com-
pute the central features of all C classes using Equation (1),
collectively denoted as F̃ i = [F̃ i

0 , . . . , F̃
i
(C−1)]. Next, we
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calculate the Euclidean distances between each sample F i
j

and all central features following Equation (2). These dis-
tances are represented as: D(F i

j ) = [dij,0, . . . , d
i
j,(C−1)],

where dij,c represents the distance between F i
j and the cen-

tral feature F̃ i
c . The pseudo-class label for sample Ij in the

feature space of M i
F is then assigned based on the nearest

central feature, computed as:

ỹij = argmin D(F i
j ). (4)

If the assigned pseudo-class label matches the ground-truth
label, i.e., ỹij = yj , then the sample is considered correctly
classified in the feature space of M i

F , and we assign a score
of φi

j = 1. Otherwise, we set φi
j = 0.

By repeating this process across all m foundation models,
we obtain a set of classification scores for each sample
across different feature spaces. The average pseudo-class
label accuracy for sample Ij is then computed as:

φj =
1

m

m∑
i=1

φi
j . (5)

A lower value of φj indicates that sample Ij is more fre-
quently misclassified across different feature spaces, sug-
gesting a higher degree of similarity to other classes and
thus greater difficulty in distinguishing it within the feature
distribution. Finally, we represent the overall pseudo-class
label accuracy for the entire dataset D as:

φ = [φ1, . . . , φN ]. (6)

Subset Selection The importance of data samples in fine-
grained learning is quantified through a linear combination
of RAnking Mean and the Accuracy of Pseudo-class Labels
(RAM-APL), formulated as:

Score = W1 ×R+W2 × (1−φ). (7)

Here, W1 and W2 control the contributions of intra-
class and inter-class distributions, respectively. Inspired
by (Swayamdipta et al., 2020), which highlights that easier
samples facilitate optimization, we prioritize high intra-class
similarity at lower sampling rates p, gradually incorporat-
ing harder samples as p increases. Thus, W1 and W2 are
dependent on the sampling rate p. The weight functions are
defined as:

W1 = α+ (1− α)× 1

1 + eβ∗( p −0.5)

W2 = 1−W1

(8)

Samples with the smallest scores are selected into S
up to the predefined budget. The hyper-parameters α
and β regulate the balance between intra-class and inter-
class information across different sampling rates. Exper-
imental results demonstrate that the best selection perfor-
mance on fine-grained datasets is achieved using MF =
{CLIP, DINOv2}.

6. Experiments
6.1. Experimental Settings

Datasets. We evaluate our method on three classical
fine-grained image classification datasets: Oxford-IIIT Pet
(Pet) (Parkhi et al., 2012), Food-101 (Bossard et al., 2014),
and Caltech-UCSD Birds-200-2011 (CUB-200-2011) (Wah
et al., 2011). The Oxford-IIIT Pet comprises 7,349 images
of 37 different breeds of cats and dogs. Food-101 has 101
classes, each with 750 training images and 250 test im-
ages. CUB-200-2011 consists of 11,788 images of 200 bird
subcategories. Detailed dataset statistics are provided in
Supplementary Material.

Foundation Models as Feature Extractor. We adopt two
FMs as feature extractors for fine-grained image datasets,
i.e., CLIP-VITl14 (Radford et al., 2021) and DINOv2-
VITs14 (Oquab et al., 2023). The visual encoder of CLIP-
VITl14 is used to extract image features, while the final
layer [CLS] token embedding output of DINOv2-VITs14
serves as the feature representation. We emphasize that
these FMs were not fine-tuned on the target datasets and
were used solely as feature extractors for subset selection.
The impact of varying the number of foundation models on
selection performance is discussed in Section 6.4.

Target Model Architecture & Training Parameters. For
Pet and Food-101 datasets, we use the 18-layer residual net-
work (ResNet-18) (He et al., 2016) as the model backbone,
initializing it randomly for training. For the CUB-200-2011
dataset, we adopt ResNet-50 as the model backbone, ini-
tialized with weights pre-trained on ImageNet (Deng et al.,
2009). We follow the experimental setup from (Guo et al.,
2022). Specifically, we use SGD as the optimizer with batch
size 128, initial learning rate 0.1, Cosine decay scheduler,
momentum 0.9, weight decay 5 × 10−4, and 200 training
epochs. For data augmentation, we employ a random resized
crop to 224× 224 resolution, followed by random horizon-
tal flipping on training images. The code of our study is
available at: https://github.com/ZhijingWan/RAM-APL.

Evaluation Metric. Prediction accuracy of a well-trained
target model on the test set is used as the evaluation metric.

Comparison Methods. Multiple subset selection methods
act as baselines for comparison. Specifically, we compare
with (1) Random, which uniformly selects samples as the
subset; (2) Herding (Welling, 2009); (3) K-Center Greedy
(KCG) (Sener & Savarese, 2017); (4) Contextual Diversity
(CD) (Agarwal et al., 2020); (5) Margin (Coleman et al.,
2019); (6) Forgetting (Toneva et al., 2018); (7) GraNd (Paul
et al., 2021); (8) Cal (Margatina et al., 2021); (9) Glis-
ter (Killamsetty et al., 2021b); (10) Graph Cut(GC) (Iyer
et al., 2021); (11) Moderate DS (MDS) (Xia et al., 2023);
(12) MINimum distance (MIN), which selects samples with
the minimum distance from the central feature of its class.
Details of baselines are in Supplementary Material.
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Figure 3. Comparison of our method with baselines on three classical fine-grained image datasets. Reported values correspond to
mean accuracy.

We implemented each selection method based on the one-
shot subset selection pipeline using code in the DeepCore
library1. The information extractors used in baselines (2)-
(12) were obtained using the traditional method, i.e., training
a model with the same backbone as the target model on the
target training set for 10 epochs to ensure a fair comparison.

6.2. Comparison with Baselines

The results comparing the accuracy between the different
subset selection methods on each fine-grained dataset are
shown in Figure 3. Given each sampling rate, class-balanced
sampling is performed. The experiments of each method on
Pet were performed five times with different random seeds,
while the experiments on Food-101 and CUB-200-2011
were performed three times with different random seeds due
to the high computational effort. We adopt α = 0.2 and
β = 1 for our method across all datasets.

As shown in Figure 3, our method outperforms all baselines
at each sampling rate. We compute the average performance
gain of each method over Random across all sampling rates.
On Pet, our method achieves a 3.74% average improvement,
substantially outperforming the sub-optimal GC method,
which shows a 1.52% average improvement. On Food-101,
our gain reaches 4.44% compared to GC’s 3.04%. On CUB-
200-2011, our method shows a 6.40% average improvement
versus GC’s 2.78%. Detailed performance and additional
cross-architecture generalization results are provided in the
Supplementary Material.

6.3. Ablation Study

Our method mainly consists of two novel designs: two fea-
ture measure metrics for multiple foundation models (i.e.,
“RAM” and “APL”). We evaluate the effectiveness of each
design on the Pet dataset. Firstly, the RAM is designed

1https://github.com/PatrickZH/DeepCore

Table 1. Ablation study based on Pet. Model-TD refers to the
model pre-trained on Pet for 10 epochs.

Method IE Sampling rates

1% 50% 70%

MIN
Model-TD 5.6±0.7 40.3±2.6 55.2±2.7

CLIP 5.6±0.2 45.9±1.8 56.3±0.7
DINOv2 6.2±0.1 46.8±2.0 60.5±2.9

RAM
CLIP+DINOv2

5.9±0.3 47.1±1.4 56.5±2.7
RAM-APL 6.5±0.4 47.5±1.9 58.7±2.2

primarily to effectively fuse the features extracted from mul-
tiple foundation models in terms of intra-class distribution,
enabling the subset selection performance to be not inferior
to that of any individual foundation model. As shown in
Table 1, when using RAM to fuse the features extracted
from CLIP and DINOv2 and selecting the samples with
the minimum ranking mean, the performance of “RAM” is
better than that of “MIN” with Model-TD or CLIP as the IE
at each sampling rate. This validates the effectiveness of the
RAM strategy. By combining APL and RAM to assess data
importance for subset selection, our method outperforms the
“MIN” baseline with DINOv2 as the IE at both 1% and 50%
sampling rates. These results highlight the effectiveness of
the joint RAM-APL strategy in fine-grained subset selection.
Further analysis in the Supplementary Material shows that
RAM-APL selects more diverse samples, enhancing overall
coverage of the feature space.

6.4. Analysis and Discussion

Parameter analysis. The hyper-parameters α and β are
used to set the joint weights W1 and W2 according to For-
mula 8. We study the impact of them in Figure 4, testing
five different values for α and β. In particular, we compared
the basic weight-setting strategy for fusion, i.e., the equal-
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Figure 4. Parameter analysis when sampling 70% of the Pet.
It shows that our method achieves the best performance when
α = 0.2 and β = 1. The grey dotted line indicates the selection
method with Score = R + (1 − φ) i.e., the direct assignment
W1 = W2 = 1 without using Formula 7.

weighted fusion strategy, where W1 = 1 and W2 = 1. As
illustrated in Figure 4, the best performance was achieved
with α = 0.2 and β = 1, outperforming the equal-weighted
fusion strategy. When α = 0.2 and β = 1, the fusion
weights (W1,W2) corresponding to 1%, 10%, 30%, 50%,
and 70% sampling rates were (0.696, 0.304), (0.679, 0.321),
(0.640, 0.360), (0.600, 0.400), (0.560, 0.44), respectively.
As the sampling rate increases, W2 increases while W1 re-
mains greater than W2. This observation suggests that focus-
ing more on inter-class feature distributions as the sampling
rate increases helps to select better fine-grained subsets, but
it is crucial to ensure that the intra-class assessment scores
continue to dominate.

Performance impact of the number of different FMs
used for IE. There exists a diverse set of FMs capable of
extracting visual features, including DINOv2 (Oquab et al.,
2023), CLIP (Radford et al., 2021), SigCLIP (Zhai et al.,
2023) and EVA-CLIP (Sun et al., 2023). These models
differ in their architectures, training strategies, and training
datasets, leading to distinct knowledge and representation
capabilities (as demonstrated in the Supplementary Mate-
rial). This raises a natural question: Does incorporating
more FMs as IEs enhance our method’s performance?

To explore this, we evaluate different combinations of
DINOv2-VITs14, CLIP-VITL14, SigLIP-base-patch16-
224, and EVA-CLIP-8B2 on the Pet dataset. As shown
in Table 2, using multiple FMs yields better overall per-
formance than any single model. DINOv2+CLIP achieves
the best trade-off between efficiency and accuracy, while
adding EVA-CLIP yields further overall gains when compu-
tational resources permit. These findings support the benefit
of multi-model consensus in our framework.

In the main experiments, we adopt DINOv2 and CLIP as our
default IE pair, which yields consistent improvements over
subset selection baselines across three fine-grained datasets.

2We use the SigLIP-base-patch16-224 and EVA-CLIP-8B from
HuggingFace (Wolf et al., 2019)

Table 2. Comparison of the performance of our method using
different numbers of foundation models as information ex-
tractors. Here, “D”, “C”, “S” and “E” represent DINOv2, CLIP,
SigLIP, EVA-CLIP, respectively.

IE Sampling rates

D C S E 1% 10% 30% 50% 70%

• ◦ ◦ ◦ 5.9±0.3 15.4±1.1 31.6±2.3 47.7±1.1 57.9±4.1
◦ • ◦ ◦ 5.7±0.4 15.0±0.2 27.9±1.2 43.6±1.9 57.0±0.4
◦ ◦ • ◦ 6.6±0.3 14.1±1.0 28.8±1.1 43.9±1.7 55.1±2.6
◦ ◦ ◦ • 5.4±0.3 15.0±0.6 30.2±2.5 44.4±2.3 56.6±1.8
• • ◦ ◦ 6.5±0.4 15.2±1.2 32.4±2.9 47.5±1.9 58.7±2.2
• ◦ • ◦ 5.9±0.3 16.2±0.1 31.4±3.2 45.0±1.3 58.6±1.2
• ◦ ◦ • 6.0±0.6 16.0±0.9 35.8±2.9 46.5±1.8 54.9±3.5
◦ • • ◦ 6.4±0.2 15.1±0.4 29.8±1.6 45.9±1.3 56.2±2.7
◦ • ◦ • 5.9±0.3 15.5±0.7 31.4±1.7 44.2±2.2 55.9±1.8
◦ ◦ • • 6.7±0.4 16.2±0.6 34.7±0.3 45.7±0.8 56.6±2.4
• • • ◦ 6.2±0.8 15.6±0.5 33.2±1.4 48.3±1.1 57.6±0.1
• • ◦ • 6.0±0.4 17.5±1.0 35.2±1.8 47.9±1.5 55.6±2.1
• ◦ • • 6.1±0.3 16.8±0.6 34.4±2.1 47.0±2.0 55.1±1.6
◦ • • • 6.1±0.2 16.1±0.3 33.9±1.4 46.8±1.5 55.1±0.5
• • • • 6.5±0.2 16.8±1.1 34.0±2.7 46.3±0.5 56.9±1.1

Table 3. Comparison of feature fusion strategies.
Fusion
strategy

Sampling rates

1% 10% 30% 50% 70%

Concatenate 5.9±0.4 16.3±0.4 31.7±1.3 47.7±3.0 57.8±1.2
Ours 6.5±0.4 15.2±1.2 32.4±2.9 47.5±1.9 58.7±2.2

Feature fusion strategy. Features extracted from differ-
ent foundation models often exhibit misalignment due to
architectural and training discrepancies. In RAM-APL, a
simple fusion baseline is to concatenate features from dif-
ferent foundation models, referred to as “Concatenate.” As
shown in Table 3, our proposed fusion strategy outperforms
simple concatenation, particularly under higher sampling
ratios, which are critical in real-world deployment scenarios.

7. Conclusion
This work is the first to explore in-depth foundation models
as information extractors (IEs) for one-shot subset selection.
Our analysis revealed surprising insights: FMs consistently
outperform traditional IEs on fine-grained datasets, whereas
their advantage diminishes on coarse-grained datasets with
noisy labels. Motivated by these findings, we developed
the RAM-APL method, which integrates multiple FMs to
enhance subset selection for fine-grained datasets. This
pioneering integration paves the way for exploring vast
frontiers of subset selection in the era of big data.
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Impact Statement
RAM-APL improves data efficiency in machine learning
by leveraging multiple foundation models for one-shot sub-
set selection, particularly benefiting fine-grained classifica-
tion scenarios. By reducing reliance on large, fully labeled
datasets, RAM-APL has the potential to lower the barriers
to deploying high-performing models in low-resource or un-
derrepresented domains. However, as with all data selection
techniques, careful consideration is needed to avoid rein-
forcing dataset biases or unintentionally omitting critical
minority samples. Our method does not involve synthetic
data generation or human subjects and poses no direct ethi-
cal risks.
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